Signal detection analyses of repetition blindness. Kanwisher, N., Kim, J., & Wickens, T. J Exp Psychol Hum Percept Perform, 22(5):1249-60, 1996. abstract bibtex Three experiments used a signal detection model to demonstrate that repetition blindness (N. Kanwisher, 1987) reflects a reduction in sensitivity (d') for the detection of repeated compared with unrepeated visual targets. In experiment 1, repetition blindness (RB) was found for rapid serial visual presentation (RSVP) letter sequences, whether the visual targets were specified by category membership (vowels) or as 1 of 2 prespecified letters (e.g., A or O). In Experiment 2, RB was found to a similar degree even when the Ist critical item was displayed for twice as long as the other list items, although overall performance was considerably improved. Experiment 3 found RB for displays containing just 2 simultaneously presented letters. These results support Kanwisher's (1987) account of RB as a genuine perceptual effect, and rule out alternative accounts of RB as the result of response bias, output interference, or guessing biases.
@Article{Kanwisher1996,
author = {NG Kanwisher and JW Kim and TD Wickens},
journal = {J Exp Psychol Hum Percept Perform},
title = {Signal detection analyses of repetition blindness.},
year = {1996},
number = {5},
pages = {1249-60},
volume = {22},
abstract = {Three experiments used a signal detection model to demonstrate that
repetition blindness (N. Kanwisher, 1987) reflects a reduction in
sensitivity (d') for the detection of repeated compared with unrepeated
visual targets. In experiment 1, repetition blindness (RB) was found
for rapid serial visual presentation (RSVP) letter sequences, whether
the visual targets were specified by category membership (vowels)
or as 1 of 2 prespecified letters (e.g., A or O). In Experiment 2,
RB was found to a similar degree even when the Ist critical item
was displayed for twice as long as the other list items, although
overall performance was considerably improved. Experiment 3 found
RB for displays containing just 2 simultaneously presented letters.
These results support Kanwisher's (1987) account of RB as a genuine
perceptual effect, and rule out alternative accounts of RB as the
result of response bias, output interference, or guessing biases.},
keywords = {Computing Methodologies, Human, Language, Learning, Mental Processes, Models, Theoretical, Stochastic Processes, Support, U.S. Gov't, Non-P.H.S., Cognition, Linguistics, Neural Networks (Computer), Practice (Psychology), Non-U.S. Gov't, Memory, Psychological, Task Performance and Analysis, Time Factors, Visual Perception, Adult, Attention, Discrimination Learning, Female, Male, Short-Term, Mental Recall, Orientation, Pattern Recognition, Visual, Perceptual Masking, Reading, Concept Formation, Form Perception, Animals, Corpus Striatum, Shrews, P.H.S., Visual Cortex, Visual Pathways, Acoustic Stimulation, Auditory Cortex, Auditory Perception, Cochlea, Ear, Gerbillinae, Glycine, Hearing, Neurons, Space Perception, Strychnine, Adolescent, Decision Making, Reaction Time, Astrocytoma, Brain Mapping, Brain Neoplasms, Cerebral Cortex, Electric Stimulation, Electrophysiology, Epilepsy, Temporal Lobe, Evoked Potentials, Frontal Lobe, Noise, Parietal Lobe, Scalp, Child, Language Development, Psycholinguistics, Brain, Perception, Speech, Vocalization, Animal, Discrimination (Psychology), Hippocampus, Rats, Calcium, Chelating Agents, Excitatory Postsynaptic Potentials, Glutamic Acid, Guanosine Diphosphate, In Vitro, Neuronal Plasticity, Pyramidal Cells, Receptors, AMPA, Metabotropic Glutamate, N-Methyl-D-Aspartate, Somatosensory Cortex, Synapses, Synaptic Transmission, Thionucleotides, Action Potentials, Calcium Channels, L-Type, Electric Conductivity, Entorhinal Cortex, Neurological, Long-Evans, Infant, Mathematics, Statistics, Probability Learning, Problem Solving, Psychophysics, Association Learning, Child Psychology, Habituation (Psychophysiology), Probability Theory, Analysis of Variance, Semantics, Symbolism, Behavior, Eye Movements, Macaca mulatta, Prefrontal Cortex, Cats, Dogs, Haplorhini, Photic Stimulation, Electroencephalography, Nervous System Physiology, Darkness, Grasshoppers, Light, Membrane Potentials, Neural Inhibition, Afferent, Picrotoxin, Vision, Deoxyglucose, Injections, Microspheres, Neural Pathways, Rhodamines, Choice Behavior, Speech Perception, Verbal Learning, Dominance, Cerebral, Fixation, Ocular, Language Tests, Random Allocation, Comparative Study, Saguinus, Sound Spectrography, Species Specificity, Audiometry, Auditory Threshold, Calibration, Data Interpretation, Statistical, Anesthesia, General, Electrodes, Implanted, Pitch Perception, Sound Localization, Paired-Associate Learning, Serial Learning, Auditory, Age Factors, Motion Perception, Brain Injuries, Computer Simulation, Blindness, Psychomotor Performance, Color Perception, Signal Detection (Psychology), 8865620},
}
Downloads: 0
{"_id":"EDFpgTdXxT26ziDPK","bibbaseid":"kanwisher-kim-wickens-signaldetectionanalysesofrepetitionblindness-1996","author_short":["Kanwisher, N.","Kim, J.","Wickens, T."],"bibdata":{"bibtype":"article","type":"article","author":[{"firstnames":["NG"],"propositions":[],"lastnames":["Kanwisher"],"suffixes":[]},{"firstnames":["JW"],"propositions":[],"lastnames":["Kim"],"suffixes":[]},{"firstnames":["TD"],"propositions":[],"lastnames":["Wickens"],"suffixes":[]}],"journal":"J Exp Psychol Hum Percept Perform","title":"Signal detection analyses of repetition blindness.","year":"1996","number":"5","pages":"1249-60","volume":"22","abstract":"Three experiments used a signal detection model to demonstrate that repetition blindness (N. Kanwisher, 1987) reflects a reduction in sensitivity (d') for the detection of repeated compared with unrepeated visual targets. In experiment 1, repetition blindness (RB) was found for rapid serial visual presentation (RSVP) letter sequences, whether the visual targets were specified by category membership (vowels) or as 1 of 2 prespecified letters (e.g., A or O). In Experiment 2, RB was found to a similar degree even when the Ist critical item was displayed for twice as long as the other list items, although overall performance was considerably improved. Experiment 3 found RB for displays containing just 2 simultaneously presented letters. These results support Kanwisher's (1987) account of RB as a genuine perceptual effect, and rule out alternative accounts of RB as the result of response bias, output interference, or guessing biases.","keywords":"Computing Methodologies, Human, Language, Learning, Mental Processes, Models, Theoretical, Stochastic Processes, Support, U.S. Gov't, Non-P.H.S., Cognition, Linguistics, Neural Networks (Computer), Practice (Psychology), Non-U.S. Gov't, Memory, Psychological, Task Performance and Analysis, Time Factors, Visual Perception, Adult, Attention, Discrimination Learning, Female, Male, Short-Term, Mental Recall, Orientation, Pattern Recognition, Visual, Perceptual Masking, Reading, Concept Formation, Form Perception, Animals, Corpus Striatum, Shrews, P.H.S., Visual Cortex, Visual Pathways, Acoustic Stimulation, Auditory Cortex, Auditory Perception, Cochlea, Ear, Gerbillinae, Glycine, Hearing, Neurons, Space Perception, Strychnine, Adolescent, Decision Making, Reaction Time, Astrocytoma, Brain Mapping, Brain Neoplasms, Cerebral Cortex, Electric Stimulation, Electrophysiology, Epilepsy, Temporal Lobe, Evoked Potentials, Frontal Lobe, Noise, Parietal Lobe, Scalp, Child, Language Development, Psycholinguistics, Brain, Perception, Speech, Vocalization, Animal, Discrimination (Psychology), Hippocampus, Rats, Calcium, Chelating Agents, Excitatory Postsynaptic Potentials, Glutamic Acid, Guanosine Diphosphate, In Vitro, Neuronal Plasticity, Pyramidal Cells, Receptors, AMPA, Metabotropic Glutamate, N-Methyl-D-Aspartate, Somatosensory Cortex, Synapses, Synaptic Transmission, Thionucleotides, Action Potentials, Calcium Channels, L-Type, Electric Conductivity, Entorhinal Cortex, Neurological, Long-Evans, Infant, Mathematics, Statistics, Probability Learning, Problem Solving, Psychophysics, Association Learning, Child Psychology, Habituation (Psychophysiology), Probability Theory, Analysis of Variance, Semantics, Symbolism, Behavior, Eye Movements, Macaca mulatta, Prefrontal Cortex, Cats, Dogs, Haplorhini, Photic Stimulation, Electroencephalography, Nervous System Physiology, Darkness, Grasshoppers, Light, Membrane Potentials, Neural Inhibition, Afferent, Picrotoxin, Vision, Deoxyglucose, Injections, Microspheres, Neural Pathways, Rhodamines, Choice Behavior, Speech Perception, Verbal Learning, Dominance, Cerebral, Fixation, Ocular, Language Tests, Random Allocation, Comparative Study, Saguinus, Sound Spectrography, Species Specificity, Audiometry, Auditory Threshold, Calibration, Data Interpretation, Statistical, Anesthesia, General, Electrodes, Implanted, Pitch Perception, Sound Localization, Paired-Associate Learning, Serial Learning, Auditory, Age Factors, Motion Perception, Brain Injuries, Computer Simulation, Blindness, Psychomotor Performance, Color Perception, Signal Detection (Psychology), 8865620","bibtex":"@Article{Kanwisher1996,\n author = {NG Kanwisher and JW Kim and TD Wickens},\n journal = {J Exp Psychol Hum Percept Perform},\n title = {Signal detection analyses of repetition blindness.},\n year = {1996},\n number = {5},\n pages = {1249-60},\n volume = {22},\n abstract = {Three experiments used a signal detection model to demonstrate that\n\trepetition blindness (N. Kanwisher, 1987) reflects a reduction in\n\tsensitivity (d') for the detection of repeated compared with unrepeated\n\tvisual targets. In experiment 1, repetition blindness (RB) was found\n\tfor rapid serial visual presentation (RSVP) letter sequences, whether\n\tthe visual targets were specified by category membership (vowels)\n\tor as 1 of 2 prespecified letters (e.g., A or O). In Experiment 2,\n\tRB was found to a similar degree even when the Ist critical item\n\twas displayed for twice as long as the other list items, although\n\toverall performance was considerably improved. Experiment 3 found\n\tRB for displays containing just 2 simultaneously presented letters.\n\tThese results support Kanwisher's (1987) account of RB as a genuine\n\tperceptual effect, and rule out alternative accounts of RB as the\n\tresult of response bias, output interference, or guessing biases.},\n keywords = {Computing Methodologies, Human, Language, Learning, Mental Processes, Models, Theoretical, Stochastic Processes, Support, U.S. Gov't, Non-P.H.S., Cognition, Linguistics, Neural Networks (Computer), Practice (Psychology), Non-U.S. Gov't, Memory, Psychological, Task Performance and Analysis, Time Factors, Visual Perception, Adult, Attention, Discrimination Learning, Female, Male, Short-Term, Mental Recall, Orientation, Pattern Recognition, Visual, Perceptual Masking, Reading, Concept Formation, Form Perception, Animals, Corpus Striatum, Shrews, P.H.S., Visual Cortex, Visual Pathways, Acoustic Stimulation, Auditory Cortex, Auditory Perception, Cochlea, Ear, Gerbillinae, Glycine, Hearing, Neurons, Space Perception, Strychnine, Adolescent, Decision Making, Reaction Time, Astrocytoma, Brain Mapping, Brain Neoplasms, Cerebral Cortex, Electric Stimulation, Electrophysiology, Epilepsy, Temporal Lobe, Evoked Potentials, Frontal Lobe, Noise, Parietal Lobe, Scalp, Child, Language Development, Psycholinguistics, Brain, Perception, Speech, Vocalization, Animal, Discrimination (Psychology), Hippocampus, Rats, Calcium, Chelating Agents, Excitatory Postsynaptic Potentials, Glutamic Acid, Guanosine Diphosphate, In Vitro, Neuronal Plasticity, Pyramidal Cells, Receptors, AMPA, Metabotropic Glutamate, N-Methyl-D-Aspartate, Somatosensory Cortex, Synapses, Synaptic Transmission, Thionucleotides, Action Potentials, Calcium Channels, L-Type, Electric Conductivity, Entorhinal Cortex, Neurological, Long-Evans, Infant, Mathematics, Statistics, Probability Learning, Problem Solving, Psychophysics, Association Learning, Child Psychology, Habituation (Psychophysiology), Probability Theory, Analysis of Variance, Semantics, Symbolism, Behavior, Eye Movements, Macaca mulatta, Prefrontal Cortex, Cats, Dogs, Haplorhini, Photic Stimulation, Electroencephalography, Nervous System Physiology, Darkness, Grasshoppers, Light, Membrane Potentials, Neural Inhibition, Afferent, Picrotoxin, Vision, Deoxyglucose, Injections, Microspheres, Neural Pathways, Rhodamines, Choice Behavior, Speech Perception, Verbal Learning, Dominance, Cerebral, Fixation, Ocular, Language Tests, Random Allocation, Comparative Study, Saguinus, Sound Spectrography, Species Specificity, Audiometry, Auditory Threshold, Calibration, Data Interpretation, Statistical, Anesthesia, General, Electrodes, Implanted, Pitch Perception, Sound Localization, Paired-Associate Learning, Serial Learning, Auditory, Age Factors, Motion Perception, Brain Injuries, Computer Simulation, Blindness, Psychomotor Performance, Color Perception, Signal Detection (Psychology), 8865620},\n}\n\n","author_short":["Kanwisher, N.","Kim, J.","Wickens, T."],"key":"Kanwisher1996","id":"Kanwisher1996","bibbaseid":"kanwisher-kim-wickens-signaldetectionanalysesofrepetitionblindness-1996","role":"author","urls":{},"keyword":["Computing Methodologies","Human","Language","Learning","Mental Processes","Models","Theoretical","Stochastic Processes","Support","U.S. Gov't","Non-P.H.S.","Cognition","Linguistics","Neural Networks (Computer)","Practice (Psychology)","Non-U.S. Gov't","Memory","Psychological","Task Performance and Analysis","Time Factors","Visual Perception","Adult","Attention","Discrimination Learning","Female","Male","Short-Term","Mental Recall","Orientation","Pattern Recognition","Visual","Perceptual Masking","Reading","Concept Formation","Form Perception","Animals","Corpus Striatum","Shrews","P.H.S.","Visual Cortex","Visual Pathways","Acoustic Stimulation","Auditory Cortex","Auditory Perception","Cochlea","Ear","Gerbillinae","Glycine","Hearing","Neurons","Space Perception","Strychnine","Adolescent","Decision Making","Reaction Time","Astrocytoma","Brain Mapping","Brain Neoplasms","Cerebral Cortex","Electric Stimulation","Electrophysiology","Epilepsy","Temporal Lobe","Evoked Potentials","Frontal Lobe","Noise","Parietal Lobe","Scalp","Child","Language Development","Psycholinguistics","Brain","Perception","Speech","Vocalization","Animal","Discrimination (Psychology)","Hippocampus","Rats","Calcium","Chelating Agents","Excitatory Postsynaptic Potentials","Glutamic Acid","Guanosine Diphosphate","In Vitro","Neuronal Plasticity","Pyramidal Cells","Receptors","AMPA","Metabotropic Glutamate","N-Methyl-D-Aspartate","Somatosensory Cortex","Synapses","Synaptic Transmission","Thionucleotides","Action Potentials","Calcium Channels","L-Type","Electric Conductivity","Entorhinal Cortex","Neurological","Long-Evans","Infant","Mathematics","Statistics","Probability Learning","Problem Solving","Psychophysics","Association Learning","Child Psychology","Habituation (Psychophysiology)","Probability Theory","Analysis of Variance","Semantics","Symbolism","Behavior","Eye Movements","Macaca mulatta","Prefrontal Cortex","Cats","Dogs","Haplorhini","Photic Stimulation","Electroencephalography","Nervous System Physiology","Darkness","Grasshoppers","Light","Membrane Potentials","Neural Inhibition","Afferent","Picrotoxin","Vision","Deoxyglucose","Injections","Microspheres","Neural Pathways","Rhodamines","Choice Behavior","Speech Perception","Verbal Learning","Dominance","Cerebral","Fixation","Ocular","Language Tests","Random Allocation","Comparative Study","Saguinus","Sound Spectrography","Species Specificity","Audiometry","Auditory Threshold","Calibration","Data Interpretation","Statistical","Anesthesia","General","Electrodes","Implanted","Pitch Perception","Sound Localization","Paired-Associate Learning","Serial Learning","Auditory","Age Factors","Motion Perception","Brain Injuries","Computer Simulation","Blindness","Psychomotor Performance","Color Perception","Signal Detection (Psychology)","8865620"],"metadata":{"authorlinks":{}}},"bibtype":"article","biburl":"https://endress.org/publications/ansgar.bib","dataSources":["xPGxHAeh3vZpx4yyE","5qXSH7BrePnXHtcrf","TXa55dQbNoWnaGmMq"],"keywords":["computing methodologies","human","language","learning","mental processes","models","theoretical","stochastic processes","support","u.s. gov't","non-p.h.s.","cognition","linguistics","neural networks (computer)","practice (psychology)","non-u.s. gov't","memory","psychological","task performance and analysis","time factors","visual perception","adult","attention","discrimination learning","female","male","short-term","mental recall","orientation","pattern recognition","visual","perceptual masking","reading","concept formation","form perception","animals","corpus striatum","shrews","p.h.s.","visual cortex","visual pathways","acoustic stimulation","auditory cortex","auditory perception","cochlea","ear","gerbillinae","glycine","hearing","neurons","space perception","strychnine","adolescent","decision making","reaction time","astrocytoma","brain mapping","brain neoplasms","cerebral cortex","electric stimulation","electrophysiology","epilepsy","temporal lobe","evoked potentials","frontal lobe","noise","parietal lobe","scalp","child","language development","psycholinguistics","brain","perception","speech","vocalization","animal","discrimination (psychology)","hippocampus","rats","calcium","chelating agents","excitatory postsynaptic potentials","glutamic acid","guanosine diphosphate","in vitro","neuronal plasticity","pyramidal cells","receptors","ampa","metabotropic glutamate","n-methyl-d-aspartate","somatosensory cortex","synapses","synaptic transmission","thionucleotides","action potentials","calcium channels","l-type","electric conductivity","entorhinal cortex","neurological","long-evans","infant","mathematics","statistics","probability learning","problem solving","psychophysics","association learning","child psychology","habituation (psychophysiology)","probability theory","analysis of variance","semantics","symbolism","behavior","eye movements","macaca mulatta","prefrontal cortex","cats","dogs","haplorhini","photic stimulation","electroencephalography","nervous system physiology","darkness","grasshoppers","light","membrane potentials","neural inhibition","afferent","picrotoxin","vision","deoxyglucose","injections","microspheres","neural pathways","rhodamines","choice behavior","speech perception","verbal learning","dominance","cerebral","fixation","ocular","language tests","random allocation","comparative study","saguinus","sound spectrography","species specificity","audiometry","auditory threshold","calibration","data interpretation","statistical","anesthesia","general","electrodes","implanted","pitch perception","sound localization","paired-associate learning","serial learning","auditory","age factors","motion perception","brain injuries","computer simulation","blindness","psychomotor performance","color perception","signal detection (psychology)","8865620"],"search_terms":["signal","detection","analyses","repetition","blindness","kanwisher","kim","wickens"],"title":"Signal detection analyses of repetition blindness.","year":1996}