Sleep and Wake Classification With ECG and Respiratory Effort Signals. Karlen, W., Mattiussi, C., & Floreano, D. IEEE Transactions on Biomedical Circuits and Systems, 3(2):71-8, 2009. doi abstract bibtex We describe a method for the online classification of sleep/wake states based on cardiorespiratory signals produced by wearable sensors. The method was conceived in view of its applicability to a wearable sleepiness monitoring device. The method uses a fast Fourier transform as the main feature extraction tool and a feedforward artificial neural network as a classifier. We show that when the method is applied to data collected from a single young male adult, the system can correctly classify, on average, 95.4% of unseen data from the same user. When the method is applied to classify data from multiple users with the same age and gender, its accuracy is reduced to 85.3%. However, receiver operating characteristic analysis shows that compared to actigraphy, the proposed method produces a more balanced correct classification of sleep and wake periods. Additionally, by adjusting the classification threshold of the neural classifier, 86.7% of correct classification is obtained.
@article{
title = {Sleep and Wake Classification With ECG and Respiratory Effort Signals},
type = {article},
year = {2009},
keywords = {Biomedical signal analysis,electrocardiography,neural classifier,respiratory effort,sleep and wake classification,wearable computing},
pages = {71-8},
volume = {3},
id = {f6be7f1e-5996-3ac0-a2cb-ef342110226c},
created = {2009-07-30T21:38:41.000Z},
file_attached = {true},
profile_id = {6d353feb-efe4-367e-84a2-0815eb9ca878},
last_modified = {2022-09-04T18:12:10.253Z},
read = {true},
starred = {false},
authored = {true},
confirmed = {true},
hidden = {false},
citation_key = {Karlen2009},
notes = {IF-2018: 4.25},
folder_uuids = {4afa9434-d8d6-102e-ac9a-0024e85ead87,f1f67efc-95a7-4f1a-b181-c3670c667a34,470e1c72-5ded-4e47-a429-6f5172e01dcb,9aa961a4-04a6-4a65-b081-d534c7a81a35,4afa90e2-d8d6-102e-ac9a-0024e85ead87,60555479-b7f0-45f5-aa97-a3920f93c426,4afa922c-d8d6-102e-ac9a-0024e85ead87,4afa909c-d8d6-102e-ac9a-0024e85ead87,7ecba661-0765-42d5-a37e-6a57b331e28c,284ba051-45b0-400f-9d1a-c93fb454df3b,4afa8d9a-d8d6-102e-ac9a-0024e85ead87},
private_publication = {false},
abstract = {We describe a method for the online classification of sleep/wake states based on cardiorespiratory signals produced by wearable sensors. The method was conceived in view of its applicability to a wearable sleepiness monitoring device. The method uses a fast Fourier transform as the main feature extraction tool and a feedforward artificial neural network as a classifier. We show that when the method is applied to data collected from a single young male adult, the system can correctly classify, on average, 95.4% of unseen data from the same user. When the method is applied to classify data from multiple users with the same age and gender, its accuracy is reduced to 85.3%. However, receiver operating characteristic analysis shows that compared to actigraphy, the proposed method produces a more balanced correct classification of sleep and wake periods. Additionally, by adjusting the classification threshold of the neural classifier, 86.7% of correct classification is obtained.},
bibtype = {article},
author = {Karlen, Walter and Mattiussi, Claudio and Floreano, Dario},
doi = {10.1109/TBCAS.2008.2008817},
journal = {IEEE Transactions on Biomedical Circuits and Systems},
number = {2}
}
Downloads: 0
{"_id":{"_str":"53421a16ecd21cdc070002ca"},"__v":2,"authorIDs":["2876Pk4oGxitiYe2f","28cPd8HZmGdZQw7SD","2P9WFLvXfGha4ekkA","2Q5SfiZidXhuF7stS","2vcrCRXkdAAKt2DFv","2w3JTY9hbMtwKzhHW","3SjhHtYDd6p6LjbJD","3wt593ShZKQoczaPk","5456ef428b01c8193000007c","5Byr9558b3SStuQcr","5MMmknGcCSM9jTR4t","5deaf7b3a31587de0100002f","5df2c10079c00ade0100000d","5df6ccd9f9318fdf010001a1","5e042eadc51eb3de0100008a","5e05f6da6a743cde010000b7","5e08ac587dc1dcdf01000073","5e0b04583830a1df010000d2","5e0be3888db71cdf0100009a","5e0c32db024014de0100004c","5e109ef4bb9e04df010000f7","5e10a8f0cfb06ddf0100002e","5e1131cc495520de01000023","5e117d147da100de01000181","5e145a4db8b351de0100019d","5e1911f5a7672ede01000111","5e1a17e59fbdddde0100002e","5e1aebc65f3d2cdf01000110","5e1f6f8ce8f5ddde010001ce","5e21a9183ef35cdf01000180","5e21e2b959a877de01000011","5e2287ccc39817df010000b4","5e2312177db53bde010000bc","5e252af4b55b9edf01000107","5e27f5474d75d8de0100005b","5e291e89a8eed2df010000f1","5e2c2d9eeb4d3ddf010000ad","5e2daf3d732e89de01000064","5e2e2580cc9e90e4010000cd","5e306f2b4988d7de010000f5","5e329540e17accde01000010","5e3696e085a47ade01000064","5e3b17d9ba2e16df010000c7","5e3d88e996e576de01000165","5e3e801e666d79df01000073","5e407987b531d7de010000bb","5e41993d8491fadf0100019a","5e41ceffe7c67ade0100010c","5e47d751af70c7de01000063","5e484ee200973ede010000cc","5e48961b6ac344de01000058","5e49de87b63120f201000111","5e4b6af4a6c158df01000019","5e4c5c36271596df01000164","5e4ca31e160d65de0100004d","5e4e9f3e64b624de0100005f","5e5320e812ed54df01000047","5e54a088fd5b13df01000119","5e560aff819fabdf010000b6","5e568caeeb2916df01000136","5e57b332041daade01000198","5e57f730a38020de010000a0","5e5a54b622eebcde01000099","5e5b3b1174a3e7df01000006","5e5eb0bc2fd1fade01000149","5e5ed85d8c261adf0100017e","5e5fbabb19c3fade0100021a","5e6009a513e3aede01000178","5e603ed8182590df010000e0","5e60546f4a1c7edf010000a4","5e606d769119f0de0100005a","5e60af7ec28c0fde010000cb","5e61007431c7d3de01000169","5e610ac431c7d3de0100021c","5e6129691cc34ede010002d2","5e6131d497c182e9010000a6","5e613fd097c182e9010001ad","5e6180a41d4ccede01000032","5e61ee510c95fdde01000116","5e6212042df238de0100005a","5e6232eda84f4adf010000b1","5e624aa93c8c6bde0100007e","5e628ba76f352ede0100017d","5e62b46dcb259cde01000011","5e62b864cb259cde0100004e","5e62bc40cb259cde0100009b","5e62d5393ba99bdf01000047","5e634791621aabde0100002d","5e635511621aabde010000e7","5e63c1a174499adf010000e9","5e63eb0d24d8f2df01000024","5e64e85f5fc0b7de0100000a","5e655c18de41b9df01000036","5e656ab7de41b9df01000121","5e6600f1fa8a45de01000019","5e666ede46e828de010002e5","5e667035152d6bde01000013","5e66c4ac277ba4df0100000b","5e66e83885689bf301000051","5e6720b90355fddf01000071","5e6741d14d24a6df01000093","5e68202bdfcfe3de0100016c","5e682a16dfcfe3de010002dc","5e686d7503bf55de0100003c","5e6895b6a79ee7de0100014f","5e689a59a79ee7de010001d6","5e68c89aae547ede010000f1","5e694b45af718af201000019","5e69666caf718af20100094a","5e69af9723ebccde0100017f","5e6a3454e3f54ade010000e4","5e6a52bcd37d43de010000f9","5e6a9ed9f216f6de01000022","5e6aa4acf216f6de010000af","5e6abf95d15181f301000061","5e6ae34c028c17de010000a9","5e6b32470c3ca1de01000062","5e6b422b0c3ca1de01000117","5e6b43330c3ca1de0100011e","5e6b95ec1e8366df01000185","63e97e4EySmD29QDk","6JHjSjj39ZDFyPiku","6cfZbyA3GXfmS73TL","76XYx5CWNkF2iFHCK","7TPpj4WZ6aKN9j8Lp","7pZCv6uba3FFhh6S6","7tFwt8o3XQfm2fGRM","7xXXAwgwpRdwdrAS3","8AnSJmXBJj4xTZnbJ","8CDa5NrpzA9DXehYn","8E2inq7pyo3sxkCX4","94cxFcMDZw9kD4G9J","98HnEbR6zkhypcoMA","9CqJuSiNMKpGaWpsb","AEnxSbbaCrKsEuvGw","AWLLmfAmQBGFcFpqW","AofR7pji8uf5P8TGf","ArXiqBDF3yjtwDYAX","AsTjvZ2Pgik9pSpMt","BETioDZHwRLzJvoMw","BbyAxEYEBtzfALW9H","BgjnZLTshwCr67TsB","CBkriMnr2rgJ9LqpJ","Cj3FpuFFqQGNX6JL2","Cwqfp3HsKYs9sG3Ln","D4NRHpWdibTSZ4HSK","DDXCqxA3SmkJmMmBh","DdzSAvjjHNwHbnQP3","DpxAEPyAayqHHgukQ","EHTyA8qE9RDYhbwES","EjZpezasdPQkjdTkJ","F2vSwrDqY2Qd4YMxg","FGfCuurTcsAc9n3dq","FkNguLjabga7JWoXq","Fm5F2hre3YXvoqBf3","G3SXN4M9bTE2zMQam","GNhor9yD2cgoG62mT","GYoatnFbuHs9LvTkg","GginvpT4XXTqopddL","GpjoC3ZCswwpbnRZ3","H57AeaPjkzkiuQH96","H8mJnYuGxa35G8SfN","HRRYgSq9mw7L4eMNS","HjQrrnRHKC2qD9kki","HxYwTypovya3osFjr","JSTdXiQwxs4c6sC3r","Jd4roq9Wxd2CWfQPB","JetAPuMjQZ8r6iLs7","JzYWzLzTf55thK5Ti","K4pwBY2gugEYzFhJY","K7StuJy9pBjEFyP77","K7oX9WTz46SDNAr3T","KmnTsfXxeg5NbCKmM","L2NPGBeotxhM9aCRk","LYCrs7tDcveNZawZK","LmiJ8MJd2Rd94GcGd","LvsQ2SyaJd673yX97","M5DejPWTTN4KN8FNK","M86hMvTjXiyqbYSwF","MZTy7vqDRjaANzefA","MfJooEQxMxvu74ijg","N8H4ghC2caGLgLnft","NNvpn4HcMYTFL5f6g","NQPktnWRF787Agr6k","NqmCW5zzi7ik2q6vn","P6vWT5RDJnyvrrDhK","PPYiGReJb47DdLLwC","PSvSrwGRAnpCcpcA2","PTEvYpwC95Eo8pZq8","PgDQhpu9uAn856J4h","PsERCaZgYCnLiGMo7","PtQB4rHFGpnNGSZ89","PwnnesHKkM8m6CbnX","Q5AwwhHQJph2JMDFP","Q8fCvX6FijmKdyxNr","QG6AZ79gMeQn49Kx7","QihYMYB8uyCZCeJ8C","Rb8mu5RHLCg2Emtiq","Rmj7ucWfGma7jXnwo","RrpqmW38uXxfQojBY","RwBuvDqHhQBGTGMJY","RxEChksq6LAe4Bp8Q","S6SzqiEuFi23ZPBd5","SJEPk7a6rE2KdQZv6","SmXSiHzcPAZB86RWv","TMnJWgdtwTipNK63q","Tn2TF4DyFBS8j3kcx","Tw2T2p32SwZQPRPGh","W6uQnGteJE2cyAeyE","XFJtMrMpnfKKD99DS","XKDDx6fwpQ45rEmw6","XgydgaPDibk8BLRo7","XhGbHSssm4cTgoZYQ","Y6Q7SkGnYYA4zzeFh","YzRdriqhSQjqFqRHF","ZiECLREnpzKPpJDMt","Znzwz6EJ9TvFwqrZN","Zqnj7yRMrCipNisWQ","ZwYg5CDkTrxCQPPMu","aBbDW7uhrw7zTaMb4","aHJo4trNbBJkxRBDe","aWnqyqcKB9wFggrPZ","admCbKqv5RycCgDwn","agFKmQpaZtsEwPHqt","azcMjZgCD4HsJmiK8","b5GzpJG64CJkATyji","bCu3SsKMcQJYZLpxF","bHXCsXH9tQBo7F4bN","bHyoJrujGL846Hpg7","bPxEB4WvNqszLpqCy","dqPPp8WwhF79BXNq3","eEgAgfetHKhp9xhqD","eFRgXhQctNSp9mTAq","eHRDMyTZnh5RoMGSH","eSdQu7pnfSB79ZegE","eTPRnw9WS2nwFQAjZ","eZ5Sz5KhqkYw22a9i","f8LTwGF62EJMphaWG","fJC9kAfDy3AQ7WxNj","fWSbpp4XXRCpZBZfa","fn9ku9Fd3F24WLgaC","fut4M5ccFCzgaPP5x","gftoGn7pB5MuE9d56","gqJ2EopkSKJAF5jMS","gvd7yPorJSRNRzcSC","h6Legr9h7vZRRbGnW","h8YYrEQwuQZQ5G7cX","h9uN6H3aAG5af4GJN","hWXiPvAm9coRDuxkZ","i4hwFxXurzhaik2wB","i6rjqifAbZNtMxa26","iJn8yngkFwb87G9G7","is5yoaLg7TeZghdw4","j4qRqfhuwLCn8uaJZ","jLT4kqNjfp77Y7NhE","jTYx7wwckRDXNen8u","jTwxQJKopFHtx9EeW","jYQNR8PLow7DwNQhn","jeZkgcuJxkgvXLXCi","jjivkkTbtBTrdR47r","jkTLQ8rJTogCkp46a","kD6p7oZQyq8c5PaqT","mFfGDNCyeK3o58W8F","mJKj27DhZCyb9AjdM","mQipmK8jvESNWpqck","mTJtAggETB2NXZPwG","mYsyxEBKXqtJMtGky","miF4Nth7Ny792yakp","mnadkbxX9WsqQkS3b","n5i6BZqJ94xBvNpvs","nfM5pm5Q239Q2MyB9","o2c9CMxN5AxidcSbs","o4wpEi9r225F4A37h","okPhQEAGKocvhdGA7","op7nJaQBFKDiz8jcn","p42tXwxB4dvHNtcLb","p9sWQraPKt9CydafK","pdQzLF9enR7tr3HmP","pxL9kgbqM2qJLMciq","q5pM5RFnqHetKzheN","q749wFba96K4CBXc5","q93LpDJf5rW3WWFFR","r2r96MfrgnqHhXj6F","rW9cNTRnHRWPfPcoB","rtbpSrz6tRLmkP7aE","sDuTFtATjuavCPw4Q","sLFyGoD46C56qEcFF","sgWbJNqZJC3awPaoT","swaEtBCB6TruB32jM","tGWcFEftNshH5GoJQ","tavEBsWfnuyQMJtj7","tgAw3xvssgmoBXwZR","tnBGESkYpQDGSb3BR","toXinrJp3yd5mcSqx","tsaHzAZkP6egjGv9L","tu68QQde5E3LNv8bk","uJ5YFRDWDjwzfjfoM","vmZBcXfMDGTAXpR68","vpZrYvKSxCS3rzkEA","w3KCtjWJiRCcQZuwJ","wFqgTZTMR7YjuhAkb","weGhS6aJv3nPND23c","wfkpyyY5AQWtfeDEe","x3iyi56jE9Tey3dsh","xGjSbi9s5bxrCShYu","xfdHNSMiBF3twzS7F","xrJpGS3FznbfYTAX6","yPoNKqoMiu37nznS3","yenzWnejhBC8w8dKt","zLW76pmkQ6q7H6Stw","zQ4a9GRbenSWQ4ycT","za4kcXCZZXK5xoKQc","zit84vkRwy5xCGriJ"],"author_short":["Karlen, W.","Mattiussi, C.","Floreano, D."],"bibbaseid":"karlen-mattiussi-floreano-sleepandwakeclassificationwithecgandrespiratoryeffortsignals-2009","bibdata":{"title":"Sleep and Wake Classification With ECG and Respiratory Effort Signals","type":"article","year":"2009","keywords":"Biomedical signal analysis,electrocardiography,neural classifier,respiratory effort,sleep and wake classification,wearable computing","pages":"71-8","volume":"3","id":"f6be7f1e-5996-3ac0-a2cb-ef342110226c","created":"2009-07-30T21:38:41.000Z","file_attached":"true","profile_id":"6d353feb-efe4-367e-84a2-0815eb9ca878","last_modified":"2022-09-04T18:12:10.253Z","read":"true","starred":false,"authored":"true","confirmed":"true","hidden":false,"citation_key":"Karlen2009","notes":"IF-2018: 4.25","folder_uuids":"4afa9434-d8d6-102e-ac9a-0024e85ead87,f1f67efc-95a7-4f1a-b181-c3670c667a34,470e1c72-5ded-4e47-a429-6f5172e01dcb,9aa961a4-04a6-4a65-b081-d534c7a81a35,4afa90e2-d8d6-102e-ac9a-0024e85ead87,60555479-b7f0-45f5-aa97-a3920f93c426,4afa922c-d8d6-102e-ac9a-0024e85ead87,4afa909c-d8d6-102e-ac9a-0024e85ead87,7ecba661-0765-42d5-a37e-6a57b331e28c,284ba051-45b0-400f-9d1a-c93fb454df3b,4afa8d9a-d8d6-102e-ac9a-0024e85ead87","private_publication":false,"abstract":"We describe a method for the online classification of sleep/wake states based on cardiorespiratory signals produced by wearable sensors. The method was conceived in view of its applicability to a wearable sleepiness monitoring device. The method uses a fast Fourier transform as the main feature extraction tool and a feedforward artificial neural network as a classifier. We show that when the method is applied to data collected from a single young male adult, the system can correctly classify, on average, 95.4% of unseen data from the same user. When the method is applied to classify data from multiple users with the same age and gender, its accuracy is reduced to 85.3%. However, receiver operating characteristic analysis shows that compared to actigraphy, the proposed method produces a more balanced correct classification of sleep and wake periods. Additionally, by adjusting the classification threshold of the neural classifier, 86.7% of correct classification is obtained.","bibtype":"article","author":"Karlen, Walter and Mattiussi, Claudio and Floreano, Dario","doi":"10.1109/TBCAS.2008.2008817","journal":"IEEE Transactions on Biomedical Circuits and Systems","number":"2","bibtex":"@article{\n title = {Sleep and Wake Classification With ECG and Respiratory Effort Signals},\n type = {article},\n year = {2009},\n keywords = {Biomedical signal analysis,electrocardiography,neural classifier,respiratory effort,sleep and wake classification,wearable computing},\n pages = {71-8},\n volume = {3},\n id = {f6be7f1e-5996-3ac0-a2cb-ef342110226c},\n created = {2009-07-30T21:38:41.000Z},\n file_attached = {true},\n profile_id = {6d353feb-efe4-367e-84a2-0815eb9ca878},\n last_modified = {2022-09-04T18:12:10.253Z},\n read = {true},\n starred = {false},\n authored = {true},\n confirmed = {true},\n hidden = {false},\n citation_key = {Karlen2009},\n notes = {IF-2018: 4.25},\n folder_uuids = {4afa9434-d8d6-102e-ac9a-0024e85ead87,f1f67efc-95a7-4f1a-b181-c3670c667a34,470e1c72-5ded-4e47-a429-6f5172e01dcb,9aa961a4-04a6-4a65-b081-d534c7a81a35,4afa90e2-d8d6-102e-ac9a-0024e85ead87,60555479-b7f0-45f5-aa97-a3920f93c426,4afa922c-d8d6-102e-ac9a-0024e85ead87,4afa909c-d8d6-102e-ac9a-0024e85ead87,7ecba661-0765-42d5-a37e-6a57b331e28c,284ba051-45b0-400f-9d1a-c93fb454df3b,4afa8d9a-d8d6-102e-ac9a-0024e85ead87},\n private_publication = {false},\n abstract = {We describe a method for the online classification of sleep/wake states based on cardiorespiratory signals produced by wearable sensors. The method was conceived in view of its applicability to a wearable sleepiness monitoring device. The method uses a fast Fourier transform as the main feature extraction tool and a feedforward artificial neural network as a classifier. We show that when the method is applied to data collected from a single young male adult, the system can correctly classify, on average, 95.4% of unseen data from the same user. When the method is applied to classify data from multiple users with the same age and gender, its accuracy is reduced to 85.3%. However, receiver operating characteristic analysis shows that compared to actigraphy, the proposed method produces a more balanced correct classification of sleep and wake periods. Additionally, by adjusting the classification threshold of the neural classifier, 86.7% of correct classification is obtained.},\n bibtype = {article},\n author = {Karlen, Walter and Mattiussi, Claudio and Floreano, Dario},\n doi = {10.1109/TBCAS.2008.2008817},\n journal = {IEEE Transactions on Biomedical Circuits and Systems},\n number = {2}\n}","author_short":["Karlen, W.","Mattiussi, C.","Floreano, D."],"biburl":"https://bibbase.org/service/mendeley/6d353feb-efe4-367e-84a2-0815eb9ca878","bibbaseid":"karlen-mattiussi-floreano-sleepandwakeclassificationwithecgandrespiratoryeffortsignals-2009","role":"author","urls":{},"keyword":["Biomedical signal analysis","electrocardiography","neural classifier","respiratory effort","sleep and wake classification","wearable computing"],"metadata":{"authorlinks":{"karlen, w":"https://bibbase.org/service/mendeley/6d353feb-efe4-367e-84a2-0815eb9ca878"}},"downloads":0},"bibtype":"article","biburl":"https://bibbase.org/service/mendeley/6d353feb-efe4-367e-84a2-0815eb9ca878","downloads":0,"keywords":["biomedical signal analysis","electrocardiography","neural classifier","respiratory effort","sleep and wake classification","wearable computing"],"search_terms":["sleep","wake","classification","ecg","respiratory","effort","signals","karlen","mattiussi","floreano"],"title":"Sleep and Wake Classification With ECG and Respiratory Effort Signals","year":2009,"dataSources":["roSbS3qLqXuscJvbp","ya2CyA73rpZseyrZ8","2252seNhipfTmjEBQ"]}