Digital halftoning as 2-D delta-sigma modulation. Kite, T. D., Evans, B. L., Bovik, A. C., & Sculley, T. L. In Image Processing, 1997. Proceedings., International Conference on, volume 1, pages 799-802, 10, 1997.
abstract   bibtex   
The error diffusion algorithm for digital halftoning is equivalent in form to a noise-shaping feedback coder, a class of delta-sigma modulator. The white noise assumption of the quantizer error is known to be false; in fact, the quantizer error is seen to be highly correlated with the input image. To account for this correlation, we use a gain model for the quantizer. This model accurately predicts the edge sharpening and noise shaping caused by all error diffusion schemes. It also permits an extension of error diffusion to oversampled imagery
@inproceedings{648084,
	Author = {Kite, T. D. and Evans, B. L. and Bovik, A. C. and Sculley, T. L.},
	Booktitle = {Image Processing, 1997. Proceedings., International Conference on},
	Date-Added = {2012-08-20 14:19:54 +0000},
	Date-Modified = {2012-11-28 22:11:24 +0000},
	Keywords = {2D delta-sigma modulation;correlation;delta-sigma modulator;digital halftoning;edge sharpening;error diffusion algorithm;error filters;gain model;input image;noise shaping;noise-shaping feedback coder;oversampled imagery;quantizer error;white noise;correlation methods;error analysis;feedback;filtering theory;image coding;image sampling;quantisation (signal);sigma-delta modulation;white noise;},
	Month = {10},
	Pages = {799-802},
	Title = {Digital halftoning as 2-D delta-sigma modulation},
	Volume = {1},
	Year = {1997},
	Abstract = {The error diffusion algorithm for digital halftoning is equivalent in form to a noise-shaping feedback coder, a class of delta-sigma modulator. The white noise assumption of the quantizer error is known to be false; in fact, the quantizer error is seen to be highly correlated with the input image. To account for this correlation, we use a gain model for the quantizer. This model accurately predicts the edge sharpening and noise shaping caused by all error diffusion schemes. It also permits an extension of error diffusion to oversampled imagery},
	Bdsk-File-1 = {YnBsaXN0MDDUAQIDBAUIJidUJHRvcFgkb2JqZWN0c1gkdmVyc2lvblkkYXJjaGl2ZXLRBgdUcm9vdIABqAkKFRYXGyIjVSRudWxs0wsMDQ4RFFpOUy5vYmplY3RzV05TLmtleXNWJGNsYXNzog8QgASABqISE4ACgAOAB1lhbGlhc0RhdGFccmVsYXRpdmVQYXRo0hgNGRpXTlMuZGF0YU8RAbYAAAAAAbYAAgAACEFyY2hpdmlvAAAAAAAAAAAAAAAAAAAAAAAAAMyPzdRIKwAAAADY/wwwMDY0ODA4NC5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANkhzFgUIAAAAAAAAAAAAAEAAwAACQAAAAAAAAAAAAAAAAAAAAAGUGFwZXJzABAACAAAzI+xtAAAABEACAAAzFf4AAAAAAEAEAAA2P8AANj9AADY+gAAAFYAAgBPQXJjaGl2aW86RG9jdW1lbnRhemlvbmk6AEFydGljb2xpIHNjaWVudGlmaWNpOgBDYXRhbG9nYXRpOgBQYXBlcnM6ADAwNjQ4MDg0LnBkZgAADgAaAAwAMAAwADYANAA4ADAAOAA0AC4AcABkAGYADwASAAgAQQByAGMAaABpAHYAaQBvABIAQy9Eb2N1bWVudGF6aW9uaS9BcnRpY29saSBzY2llbnRpZmljaS9DYXRhbG9nYXRpL1BhcGVycy8wMDY0ODA4NC5wZGYAABMAES9Wb2x1bWVzL0FyY2hpdmlvAP//AACABdIcHR4fWCRjbGFzc2VzWiRjbGFzc25hbWWjHyAhXU5TTXV0YWJsZURhdGFWTlNEYXRhWE5TT2JqZWN0XxATUGFwZXJzLzAwNjQ4MDg0LnBkZtIcHSQloiUhXE5TRGljdGlvbmFyeRIAAYagXxAPTlNLZXllZEFyY2hpdmVyAAgAEQAWAB8AKAAyADUAOgA8AEUASwBSAF0AZQBsAG8AcQBzAHYAeAB6AHwAhgCTAJgAoAJaAlwCYQJqAnUCeQKHAo4ClwKtArICtQLCAscAAAAAAAACAQAAAAAAAAAoAAAAAAAAAAAAAAAAAAAC2Q==},
	Bdsk-Url-1 = {http://dx.doi.org/10.1109/ICIP.1997.648084}}
Downloads: 0