When a stochastic exponential is a true martingale. Extension of the Bene ̌s method. Klebaner, F. & Liptser, R. Theory Probab. Appl., 58(1):38–62, 2014.
When a stochastic exponential is a true martingale. Extension of the Bene ̌s method [link]Paper  doi  bibtex   
@article{MR3267283,
	Author = {Klebaner, F. and Liptser, R.},
	Date-Added = {2017-10-09 19:04:36 +0000},
	Date-Modified = {2017-10-09 19:04:36 +0000},
	Doi = {10.1137/S0040585X97986382},
	Fjournal = {Theory of Probability and its Applications},
	Issn = {0040-585X},
	Journal = {Theory Probab. Appl.},
	Mrclass = {60G44 (60J25 60J75)},
	Mrnumber = {3267283},
	Number = {1},
	Pages = {38--62},
	Title = {When a stochastic exponential is a true martingale. {E}xtension of the {B}ene\v s method},
	Url = {http://dx.doi.org/10.1137/S0040585X97986382},
	Volume = {58},
	Year = {2014},
	Bdsk-File-1 = {YnBsaXN0MDDSAQIDBFxyZWxhdGl2ZVBhdGhZYWxpYXNEYXRhXxAaQmliRGVza2NvcHkvTVIzMjY3MjgzYS5wZGZPEQGEAAAAAAGEAAIAAAxNYWNpbnRvc2ggSEQAAAAAAAAAAAAAAAAAAAAAAAAAQkQAAf////8OTVIzMjY3MjgzYS5wZGYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/////wAAAAAAAAAAAAAAAAABAAMAAAogY3UAAAAAAAAAAAAAAAAAC0JpYkRlc2tjb3B5AAACAEQvOlVzZXJzOmdlcm9uaW1vOkxpYnJhcnk6dGV4bWY6YmlidGV4OmJpYjpCaWJEZXNrY29weTpNUjMyNjcyODNhLnBkZgAOAB4ADgBNAFIAMwAyADYANwAyADgAMwBhAC4AcABkAGYADwAaAAwATQBhAGMAaQBuAHQAbwBzAGgAIABIAEQAEgBCVXNlcnMvZ2Vyb25pbW8vTGlicmFyeS90ZXhtZi9iaWJ0ZXgvYmliL0JpYkRlc2tjb3B5L01SMzI2NzI4M2EucGRmABMAAS8AABUAAgAP//8AAAAIAA0AGgAkAEEAAAAAAAACAQAAAAAAAAAFAAAAAAAAAAAAAAAAAAAByQ==},
	Bdsk-Url-1 = {http://dx.doi.org/10.1137/S0040585X97986382}}

Downloads: 0