Synthesis of carbon nanotubes by pyrolysis of solid Ni(dmg) 2 . Kordatos, K, Vlasopoulos, A D, Strikos, S, Ntziouni, A, Gavela, S, Trasobares, S, & Kasselouri-Rigopoulou, V Electrochimica Acta, 54(9):2466–2472, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Street, 15780 Zografou, Greece, 2009.
Synthesis of carbon nanotubes by pyrolysis of solid Ni(dmg) 2  [link]Paper  abstract   bibtex   
We describe the high yield synthesis of multi-walled carbon nanotubes (MWCNTs) and the determination of the optimum production conditions. The method involves the catalytic pyrolysis of solid Ni(dmg) 2 under an Ar atmosphere. The obtained materials were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectroscopy and thermogravimetry analysis (TGA). The data revealed the formation of MWCNTs surrounded by a varying quantity of byproducts such as amorphous carbon and metallic particles, depending mainly on the reaction temperature. Pyrolysis of Ni(dmg) 2 at 900 °C results in the production of nanotube material with the highest degree of crystallinity. © 2008 Elsevier Ltd. All rights reserved.
@article{Kordatos2009,
abstract = {We describe the high yield synthesis of multi-walled carbon nanotubes (MWCNTs) and the determination of the optimum production conditions. The method involves the catalytic pyrolysis of solid Ni(dmg) 2 under an Ar atmosphere. The obtained materials were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectroscopy and thermogravimetry analysis (TGA). The data revealed the formation of MWCNTs surrounded by a varying quantity of byproducts such as amorphous carbon and metallic particles, depending mainly on the reaction temperature. Pyrolysis of Ni(dmg) 2 at 900 °C results in the production of nanotube material with the highest degree of crystallinity. © 2008 Elsevier Ltd. All rights reserved.},
address = {School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Street, 15780 Zografou, Greece},
annote = {Cited By (since 1996): 4

        
Export Date: 15 January 2013

        
Source: Scopus

        
CODEN: ELCAA

        
doi: 10.1016/j.electacta.2008.07.080

        
Language of Original Document: English

        
Correspondence Address: Kordatos, K.; School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Street, 15780 Zografou, Greece; email: kordatos@central.ntua.gr

        
References: Iijima, S., (1991) Nature, 354, p. 56; 
Iijima, S., Ichihashi, T., (1993) Nature, 363, p. 603; 
Treacy, M.M.J., Ebbesen, T.W., Gibson, J.M., (1996) Nature, 381, p. 678; 
Delaney, P., Choi, H.J., Ihm, J., Louie, S.G., Cohen, M.L., (1998) Nature, 391, p. 466; 
Berber, S., Kwon, Y.K., Tomanek, D., (2000) Phys. Rev. Lett., 84, p. 4613; 
Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F., Smalley, R.E., (1985) Nature, 318, p. 162; 
Thostenson, E.T., Ren, Z.F., Chou, T.W., (2001) Compos. Sci. Technol., 61, p. 1899; 
Haggenmueller, R., Gommans, H.H., Rinzler, A.G., Fischer, J.E., Winey, K.I., (2000) Chem. Phys. Lett., 330, p. 219; 
Gommans, H.H., Alldredge, J.W., Tashiro, H., Park, J., Magnuson, J., Rinzler, A.G., (2000) J. Appl. Phys., 88, p. 2509; 
Tans, S.J., Verschueren, A.R.M., Dekker, C., (1998) Nature, 393, p. 49; 
Collins, P.C., Arnold, M.S., Avouris, P., (2001) Science, 292, p. 706; 
Wong, S.S., Joselevich, E., Woolley, A.T., Cheung, C.L., Lieber, C.M., (1998) Nature, 394, p. 52; 
Darkrim, F., Levesque, D., (2000) J. Phys. Chem. B, 104, p. 6773; 
Ebbesen, T.W., Lezec, H.J., Hiura, H., Bennett, J.W., Ghaemi, H.F., Thio, T., (1996) Nature, 382, p. 54; 
Fan, S.S., Chapline, M.G., Franklin, N.R., Tombler, T.W., Cassell, A.M., Dai, H.J., (1999) Science, 283, p. 512; 
Ebbesen, T.W., Ajayan, P.M., (1992) Nature, 358, p. 220; 
Thess, A., Lee, R., Nikolaev, P., Dai, H.J., Petit, P., Robert, J., Xu, C.H., Smalley, R.E., (1996) Science, 273, p. 483; 
Terrones, M., Grobert, N., Olivares, J., Zhang, J.P., Terrones, H., Kordatos, K., Hsu, W.K., Walton, D.R.M., (1997) Nature, 388, p. 52; 
Sen, R., Govindaraj, A., Rao, C.N.R., (1997) Chem. Phys. Lett., 267, p. 276; 
Andrews, R., Jacques, D., Rao, A.M., Derbyshire, F., Qian, D., Fan, X., Dickey, E.C., Chen, J., (1999) Chem. Phys. Lett., 303, p. 467; 
Perez-Mendoza, M., Valles, C., Maser, W.K., Martinez, M.T., Langlois, S., Sauvajol, J.L., Benito, A.M., (2005) Carbon, 43, p. 3034; 
Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, J.H., Bush, P., Siegal, M.P., Provencio, P.N., (1998) Science, 282, p. 1105; 
Caton, J.E., Banks, C.V., (1966) Talanta, 13, p. 967; 
Cui, H., Eres, G., Howe, J.Y., Puretkzy, A., Varela, M., Geohegan, D.B., Lowndes, D.H., (2003) Chem. Phys. Lett., 374, p. 222; 
Terrones, M., Redlich, P., Grobert, N., Trasobares, S., Hsu, W.K., Terrones, H., Zhu, Y.Q., Walton, D.R.M., (1999) Adv. Mater., 11, p. 655; 
Rao, A.M., Jorio, A., Pimenta, M.A., Dantas, M.S.S., Saito, R., Dresselhaus, G., Dresselhaus, M.S., (2000) Phys. Rev. Lett., 84, p. 1820; 
Nemanich, R.J., Solin, S.A., (1979) Phys. Rev. B, 20, p. 392; 
Bacsa, W.S., Ugarte, D., Chatelain, A., De Heer, W.A., (1994) Phys. Rev. B, 50, p. 15473; 
Geng, J., Li, H.W., Golovko, V.B., Shephard, D.S., Jefferson, D.A., Johnson, B.F.G., Hofmann, S., Ducati, C., (2004) J. Phys. Chem. B, 108, p. 18446},
author = {Kordatos, K and Vlasopoulos, A D and Strikos, S and Ntziouni, A and Gavela, S and Trasobares, S and Kasselouri-Rigopoulou, V},
issn = {00134686 (ISSN)},
journal = {Electrochimica Acta},
keywords = {Amorphous carbon,Carbon nanotubes,Catalytic pyrolysis,Chemical reactions,Degree of crystallinity,Electron microscopes,Electron microscopy,Electrons,Energy-dispersive x-rays,High resolution transmission electron microscopy,High-resolution transmission electron microscopies,High-yield synthesis,Metallic particles,Multi-walled carbon nanotubes,Multiwalled carbon nanotubes (MWCN),Ni(dmg) 2 ,Ni(dmg) <sub>2</sub>,Nickel,Production conditions,Pyrolysis,Reaction temperatures,Scanning electron microscopy,Sem,Thermogravimetric analysis,Thermogravimetry analysis,X ray diffraction analysis,X-ray diffractions},
number = {9},
pages = {2466--2472},
title = {{Synthesis of carbon nanotubes by pyrolysis of solid Ni(dmg) 2 }},
url = {https://www.scopus.com/inward/record.url?eid=2-s2.0-60949105709&partnerID=40&md5=fc2ad820d9546411d91c0ff4162b67fa},
volume = {54},
year = {2009}
}

Downloads: 0