DblurDoseNet: A deep residual learning network for voxel radionuclide dosimetry compensating for SPECT imaging resolution. Li, Z., Fessler, J. A., Mikell, J. K., Wilderman, S. J., & Dewaraja, Y. K. Med. Phys., 49(2):1216–30, February, 2022. doi bibtex @ARTICLE{li:22:dad,
author = {Z. Li and J. A. Fessler and J. K. Mikell and S. J. Wilderman and Y. K. Dewaraja},
title = {{DblurDoseNet:} {A} deep residual learning network for voxel radionuclide dosimetry compensating for {SPECT} imaging resolution},
journal = {{Med. Phys.}},
volume = 49,
number = 2,
pages = {{1216--30}},
month = feb,
code = {https://github.com/ZongyuLi-umich/DblurDoseNet},
doi = {10.1002/mp.15397},
year = 2022
}
Downloads: 0
{"_id":"DkcDT3Fgrk5KhrP8A","bibbaseid":"li-fessler-mikell-wilderman-dewaraja-dblurdosenetadeepresiduallearningnetworkforvoxelradionuclidedosimetrycompensatingforspectimagingresolution-2022","author_short":["Li, Z.","Fessler, J. A.","Mikell, J. K.","Wilderman, S. J.","Dewaraja, Y. K."],"bibdata":{"bibtype":"article","type":"article","author":[{"firstnames":["Z."],"propositions":[],"lastnames":["Li"],"suffixes":[]},{"firstnames":["J.","A."],"propositions":[],"lastnames":["Fessler"],"suffixes":[]},{"firstnames":["J.","K."],"propositions":[],"lastnames":["Mikell"],"suffixes":[]},{"firstnames":["S.","J."],"propositions":[],"lastnames":["Wilderman"],"suffixes":[]},{"firstnames":["Y.","K."],"propositions":[],"lastnames":["Dewaraja"],"suffixes":[]}],"title":"DblurDoseNet: A deep residual learning network for voxel radionuclide dosimetry compensating for SPECT imaging resolution","journal":"Med. Phys.","volume":"49","number":"2","pages":"1216–30","month":"February","code":"https://github.com/ZongyuLi-umich/DblurDoseNet","doi":"10.1002/mp.15397","year":"2022","bibtex":"@ARTICLE{li:22:dad,\n author = {Z. Li and J. A. Fessler and J. K. Mikell and S. J. Wilderman and Y. K. Dewaraja},\n title = {{DblurDoseNet:} {A} deep residual learning network for voxel radionuclide dosimetry compensating for {SPECT} imaging resolution},\n journal = {{Med. Phys.}},\n volume = 49,\n number = 2,\n pages = {{1216--30}},\n month = feb,\n code = {https://github.com/ZongyuLi-umich/DblurDoseNet},\n doi = {10.1002/mp.15397},\n year = 2022\n}\n\n","author_short":["Li, Z.","Fessler, J. A.","Mikell, J. K.","Wilderman, S. J.","Dewaraja, Y. K."],"key":"li:22:dad","id":"li:22:dad","bibbaseid":"li-fessler-mikell-wilderman-dewaraja-dblurdosenetadeepresiduallearningnetworkforvoxelradionuclidedosimetrycompensatingforspectimagingresolution-2022","role":"author","urls":{},"metadata":{"authorlinks":{}},"html":""},"bibtype":"article","biburl":"http://web.eecs.umich.edu/~fessler/papers/lists/t,jour.bib","dataSources":["kd6C5knneZoMrc2zM"],"keywords":[],"search_terms":["dblurdosenet","deep","residual","learning","network","voxel","radionuclide","dosimetry","compensating","spect","imaging","resolution","li","fessler","mikell","wilderman","dewaraja"],"title":"DblurDoseNet: A deep residual learning network for voxel radionuclide dosimetry compensating for SPECT imaging resolution","year":2022}