A Bayesian Approach to Fault Identification in the Presence of Multi-component Degradation. Lin, Y., Zakwan, S., & Jennions, I. International Journal of Prognostics and Health Management, 2017. Number: 1
A Bayesian Approach to Fault Identification in the Presence of Multi-component Degradation [link]Paper  doi  abstract   bibtex   
Fault diagnosis typically consists of fault detection, isolation and identification. Fault detection and isolation determine the presence of a fault in a system and the location of the fault. Fault identification then aims at determining the severity level of the fault. In a practical sense, a fault is a conditional interruption of the system ability to achieve a required function under specified operating condition; degradation is the deviation of one or more characteristic parameters of the component from acceptable conditions and is often a main cause for fault generation. A fault occurs when the degradation exceeds an allowable threshold. From the point a new aircraft takes off for the first time all of its components start to degrade, and yet in almost all studies it is presumed that we can identify a single fault in isolation, i.e. without considering multi-component degradation in the system. This paper proposes a probabilistic framework to identify a single fault in an aircraft fuel system with consideration of multi-component degradation. Based on the conditional probabilities of sensor readings for a specific fault, a Bayesian method is presented to integrate distributed sensory information and calculate the likelihood of all possible fault severity levels. The proposed framework is implemented on an experimental aircraft fuel rig which illustrates the applicability of the proposed method.
@article{lin_bayesian_2017,
	title = {A {Bayesian} {Approach} to {Fault} {Identification} in the {Presence} of {Multi}-component {Degradation}},
	volume = {8},
	copyright = {Copyright (c) 2017 Yufei Lin, Skaf Zakwan, Ian Jennions},
	issn = {2153-2648},
	url = {http://papers.phmsociety.org/index.php/ijphm/article/view/2530},
	doi = {10.36001/ijphm.2017.v8i1.2530},
	abstract = {Fault diagnosis typically consists of fault detection, isolation and identification. Fault detection and isolation determine the presence of a fault in a system and the location of the fault. Fault identification then aims at determining the severity level of the fault. In a practical sense, a fault is a conditional interruption of the system ability to achieve a required function under specified operating condition; degradation is the deviation of one or more characteristic parameters of the component from acceptable conditions and is often a main cause for fault generation. A fault occurs when the degradation exceeds an allowable threshold. From the point a new aircraft takes off for the first time all of its components start to degrade, and yet in almost all studies it is presumed that we can identify a single fault in isolation, i.e. without considering multi-component degradation in the system. This paper proposes a probabilistic framework to identify a single fault in an aircraft fuel system with consideration of multi-component degradation. Based on the conditional probabilities of sensor readings for a specific fault, a Bayesian method is presented to integrate distributed sensory information and calculate the likelihood of all possible fault severity levels. The proposed framework is implemented on an experimental aircraft fuel rig which illustrates the applicability of the proposed method.},
	language = {en},
	number = {1},
	urldate = {2021-10-28},
	journal = {International Journal of Prognostics and Health Management},
	author = {Lin, Yufei and Zakwan, Skaf and Jennions, Ian},
	year = {2017},
	note = {Number: 1},
	keywords = {Aircraft fuel rig, bayesian, diagnostics, multicomponent},
}

Downloads: 0