Scanning transmission electron microscopy investigation of differences in the high temperature redox deactivation behavior of CePrOx particles supported on modified alumina. Ĺopez-Haro, M., Aboussaïd, K., Gonzalez, C, J., Herńandez, C, J., Pintado, M, J., Blanco, G., Calvino, J, J., Midgley, A, P., Bayle-Guillemaud, P., & Trasobares, S. Chemistry of Materials, 21(6):1035--1045, Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Campus Rio San Pedro, Universidad de Ćadiz, Puerto Real, 11510-Cddiz, Spain, 2009.
Scanning transmission electron microscopy investigation of differences in the high temperature redox deactivation behavior of CePrOx particles supported on modified alumina [link]Paper  abstract   bibtex   
An in-depth structural and analytical investigation of two 25 wt % Ce 0.08 Pr0.02O2/d-Al2O3 catalysts, d = 3.5 wt % SiO2, 4 wt % La2O3, is performed aimed at clarifying the origin of the differences in the evolution of their oxygen storage capacity with temperature. Using a combination of transmission and scanning transmission electron microscopy techniques, the fine details of the structural and compositional changes of the two catalysts with reduction temperature has allowed us to establish the role of SiO2 as a stabilizer of the oxygen handling properties of the Ce - Pr mixed oxide phase under high temperature reducing environments. The entire set of data clearly reveals that Pr does not fully mix with Ce during the synthesis of both catalysts, the spatial distribution of this uncombined fraction of Pr loading being in each case very different: as nanosized particles in the catalyst prepared on the SiO2-doped substrate and as a highly dispersed phase in the lanthana modified alumina catalyst. Therefore, SiO2 doping provides a barrier against lanthanide element incorporation into the alumina support. This effect hinders the formation of large amounts of the LnAlO 3 (Ln = Ce, Pr) perovskite phase which, as established by HREM and XRD, is responsible of the loss of oxygen storage capacity during hydrogen treatments at temperatures above 800 °C. © 2009 American Chemical Society.
@article{ Lopez-Haro2009,
  abstract = {An in-depth structural and analytical investigation of two 25 wt % Ce 0.08 Pr0.02O2/d-Al2O3 catalysts, d = 3.5 wt % SiO2, 4 wt % La2O3, is performed aimed at clarifying the origin of the differences in the evolution of their oxygen storage capacity with temperature. Using a combination of transmission and scanning transmission electron microscopy techniques, the fine details of the structural and compositional changes of the two catalysts with reduction temperature has allowed us to establish the role of SiO2 as a stabilizer of the oxygen handling properties of the Ce - Pr mixed oxide phase under high temperature reducing environments. The entire set of data clearly reveals that Pr does not fully mix with Ce during the synthesis of both catalysts, the spatial distribution of this uncombined fraction of Pr loading being in each case very different: as nanosized particles in the catalyst prepared on the SiO2-doped substrate and as a highly dispersed phase in the lanthana modified alumina catalyst. Therefore, SiO2 doping provides a barrier against lanthanide element incorporation into the alumina support. This effect hinders the formation of large amounts of the LnAlO 3 (Ln = Ce, Pr) perovskite phase which, as established by HREM and XRD, is responsible of the loss of oxygen storage capacity during hydrogen treatments at temperatures above 800 °C. © 2009 American Chemical Society.},
  address = {Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Campus Rio San Pedro, Universidad de Ć{a}diz, Puerto Real, 11510-Cddiz, Spain},
  annote = {Cited By (since 1996): 10

        
Export Date: 15 January 2013

        
Source: Scopus

        
CODEN: CMATE

        
doi: 10.1021/cm8029054

        
Language of Original Document: English

        
Correspondence Address: Trasobares, S.; Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Campus Rio San Pedro, Universidad de Ć{a}diz, Puerto Real, 11510-Cddiz, Spain

        
References: Rojas, T.C., Ocana, M., (2002) Scr. Mater, 46 (9), pp. 655-660; 
Suleova, P., Trojan, M., (2003) Thermochim. Acta; 
Aruna, S.T., Ghosh, S., Patil, K.C., (2001) Int. J. Inorg. Mater, 3 (4-5), pp. 387-392; 
Stefanik, T.S., Teuller, H.L., (2004) J. Electroceram; 
Logan, A.D., Shelef, M., (1994) J. Mater. Res, 9 (2), pp. 468-475; 
Mikulova, J., Rossignol, S., Barbier, J., Mesnard, D., Kappenstein, C., Duprez, D., (2007) Appl. Catal. B, 72 (1-2), pp. 1-10; 
Knauth, P., TuUer, H.L., (1999) J. Eur. Ceram. Soc, 19 (6-7), pp. 831-836; 
Brauer, G., Willaredt, B., (1978) J. Less-Common Met, 61 (1), pp. 83-89; 
Nauer, M.C.F.B., Steele, C.H., (1994) J. Eur. Ceram. Soc, p. 14; 
Kang, Z.C., Eyring, L., (2000) J. Solid State Chem, 155 (1), pp. 129-137; 
Ryan, K.M., McGrath, J.P., Earrell, R.A., O'Neill, W.M., Barnes, C.J., (2003) J. Phys, , Condens. Matter; 
Borchert, H.; Frolova, Y. V.; Kaichev, V. V.; Prosvirin, I. P.; Alikina, G. M.; Lukashevich, V. I.; Zaikovskii, V. I.; Moroz, E. M.; Trukhan, S. N.; lvanov. V. P.; Paukshtis. E. A.; Bukhtivarov, V. I.; Sadykov, V. A. J. Phys. Chem. B 2005, 109, 5728-5738Rossignol, S., Descorme, C., Kappenstein, C., Duprez, D., (2001) J. Mater. Chem, 11 (10), pp. 2587-2592; 
Church, J.S., Cant, N.W., Trimm, D.L., (1993) Appl. Catal. A, 101 (1), pp. 105-116; 
Johnson, M.F.L., (1990) J. Catal, 123 (1), pp. 245-259; 
Aral, H., Machida, M., (1996) Appl. Catal A, 138 (2), pp. 161-176; 
Rossignol, S., Kappenstein, C., (2001) Int. J. Inorg. Mater, 3 (1), pp. 51-58; 
Navarro, R.M., Alvarez-Galvan, M.C., Rosa, F., Fierro, J.L.G., (2006) Appl. Catal. A, 297 (1), pp. 60-72; 
Miller, J.B., Ko, E.I., (1998) Catal. Today, 43 (1-2), pp. 51-67; 
Bernal, S., Calvino, J.J., Cifredo, G.A., Finol, D., Gatica, J.M., Kiely, C.J., Lopez-Cartes, C., Vidal, H., (2002) Chem. Mater, 14 (3), pp. 1405-1410; 
Deganello, F., Longo, A., Martorana, A., (2003) J. Solid State Chem, 175 (2), pp. 289-298; 
Oudet, F., Courtine, P., Vejux, A., (1988) J. Catal, 114 (1), pp. 112-120; 
Wang, S.W., Borisevich, A.Y., Rashkeev, S.N., Glazoff, M.V., Sohlberg, K., Pennycook, S.J., Pantelides, S.T., (2004) Nat. Mater, 3 (4), pp. 274-274; 
Popa, A.F., Rossignol, S., Kappenstein, C., (2002) J. Mater. Chem, 12 (10), pp. 2866-2868; 
Aboussaïd, K., Bernal, S., Blanco, G., Cifredo, G.A., Galtayries, A., Pintado, J.M., Soussi el Begranib, M., (2008) Surf. Interface Anal, 40, pp. 250-253; 
Midglev, P.A., Weyland, M., (2003) Ultramicroscopy, 96 (3-4), pp. 413-431; 
Bavle-Guillemaud, P., Radtke, G., Sennour, M., (2003) J. Microsc. (Oxford, U.K.), 210, pp. 66-73; 
Stadelmann, P., (2003) Microsc. Microanal, 9 (SUPPL. 03), pp. 60-61; 
Holgado, J.P., Alvarez, R., Munuera, G., (2000) Appl. Surf. Sci, 161 (3-4), pp. 301-315; 
Pennvcook, S.J., Jesson, D.E., (1991) Ultramicroscopy, 37 (1-4), pp. 14-38; 
Trovarelli, A., (2002) Catalysisi by ceria and Related Materials, 2. , Imperial College Press: London; 
Pintado Caña. J. M. Ph.D. Thesis, Universidad de Ć{a}diz, Ć{a}diz, 1995Bernal, G.B.S., Gatica, J.M., Pintado, J.M., Pérez-Omily, S., (1997) Boletín de la Sociedad Española de Ceŕ{a}mica y Vidrio, 36 (2-3); 
Dexpert, H., Caro, P., (1974) Mater. Res. Bull, 9 (11), pp. 1577-1585; 
Christensen, N., (1973) Acta Chem. Scand, 1 (27), pp. 2973-2982},
  author = {Ĺ{o}pez-Haro, M and Aboussaïd, K and Gonzalez, J C and Herń{a}ndez, J C and Pintado, J M and Blanco, G and Calvino, J J and Midgley, P A and Bayle-Guillemaud, P and Trasobares, S},
  issn = {08974756 (ISSN)},
  journal = {Chemistry of Materials},
  keywords = {Alumina,Alumina supports,Analytical investigations,Catalysis,Catalysts,Cerium,Cerium compounds,Clarification,Compositional changes,Dispersed phase,Doped substrates,Doping (additives),Electric field measurement,Electron microscopes,Handling properties,High temperatures,Hydrogen,Hydrogen storage,Hydrogen treatments,Lanthana,Lanthanide,Mixed oxides,Modified aluminas,Nano-sized particles,Oxide minerals,Oxygen,Oxygen storage capacities,Perovskite,Perovskite phase,Reducing environments,Reduction temperatures,Scanning,Scanning electron microscopy,Scanning transmission electron microscopies,Silicon compounds,Size distribution,Spatial distributions,Transmission electron microscopy,XRD},
  number = {6},
  pages = {1035--1045},
  title = {{Scanning transmission electron microscopy investigation of differences in the high temperature redox deactivation behavior of CePrOx particles supported on modified alumina}},
  url = {https://www.scopus.com/inward/record.url?eid=2-s2.0-65249118738&partnerID=40&md5=89e76b6b693922e5381a744614b403fe},
  volume = {21},
  year = {2009}
}

Downloads: 0