{"_id":"B3pXXEPeaAFjf5mBg","bibbaseid":"lpezzorrilla-aretxabaleta-yeu-etxebarria-manzano-artrith-netpytorchagpusupportedimplementationformachinelearningatomicpotentialstraining-2023","author_short":["López-Zorrilla, J.","Aretxabaleta, X.","Yeu, I.","Etxebarria, I.","Manzano, H.","Artrith, N."],"bibdata":{"bibtype":"article","type":"article","title":"ænet-PyTorch: A GPU-supported implementation for machine learning atomic potentials training","volume":"158","url":"https://www.scopus.com/inward/record.uri?eid=2-s2.0-85153687480&doi=10.1063%2f5.0146803&partnerID=40&md5=95d63ffbda8b35d33d9b7da97ee65cef","doi":"10.1063/5.0146803","number":"16","journal":"Journal of Chemical Physics","author":[{"propositions":[],"lastnames":["López-Zorrilla"],"firstnames":["J."],"suffixes":[]},{"propositions":[],"lastnames":["Aretxabaleta"],"firstnames":["X.M."],"suffixes":[]},{"propositions":[],"lastnames":["Yeu"],"firstnames":["I.W."],"suffixes":[]},{"propositions":[],"lastnames":["Etxebarria"],"firstnames":["I."],"suffixes":[]},{"propositions":[],"lastnames":["Manzano"],"firstnames":["H."],"suffixes":[]},{"propositions":[],"lastnames":["Artrith"],"firstnames":["N."],"suffixes":[]}],"year":"2023","bibtex":"@article{lopez-zorrilla_aenet-pytorch_2023,\n\ttitle = {ænet-{PyTorch}: {A} {GPU}-supported implementation for machine learning atomic potentials training},\n\tvolume = {158},\n\turl = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85153687480&doi=10.1063%2f5.0146803&partnerID=40&md5=95d63ffbda8b35d33d9b7da97ee65cef},\n\tdoi = {10.1063/5.0146803},\n\tnumber = {16},\n\tjournal = {Journal of Chemical Physics},\n\tauthor = {López-Zorrilla, J. and Aretxabaleta, X.M. and Yeu, I.W. and Etxebarria, I. and Manzano, H. and Artrith, N.},\n\tyear = {2023},\n}\n\n","author_short":["López-Zorrilla, J.","Aretxabaleta, X.","Yeu, I.","Etxebarria, I.","Manzano, H.","Artrith, N."],"key":"lopez-zorrilla_aenet-pytorch_2023","id":"lopez-zorrilla_aenet-pytorch_2023","bibbaseid":"lpezzorrilla-aretxabaleta-yeu-etxebarria-manzano-artrith-netpytorchagpusupportedimplementationformachinelearningatomicpotentialstraining-2023","role":"author","urls":{"Paper":"https://www.scopus.com/inward/record.uri?eid=2-s2.0-85153687480&doi=10.1063%2f5.0146803&partnerID=40&md5=95d63ffbda8b35d33d9b7da97ee65cef"},"metadata":{"authorlinks":{}}},"bibtype":"article","biburl":"https://bibbase.org/f/PY5AfJk85rDJNNHZm/Mi biblioteca.bib","dataSources":["Bnt9hkYXF9F5qZ95K","KGnRmZfii3TyLSsb5","QwKwLnSjeNQJrvrsg","kFHXumE4FdCbTW6J9","FZNHofAp7RYWFD3Nx","yDceTXRqa39zAdHMi"],"keywords":[],"search_terms":["net","pytorch","gpu","supported","implementation","machine","learning","atomic","potentials","training","lópez-zorrilla","aretxabaleta","yeu","etxebarria","manzano","artrith"],"title":"ænet-PyTorch: A GPU-supported implementation for machine learning atomic potentials training","year":2023}