2D and 3D bladder segmentation using U-Net-based deep-learning. Ma, X., Hadjiiski, L. M., Wei, J., Chan, H., Cha, K. H., Cohan, R. H., Caoili, E. M., Samala, R., Zhou, C., & Lu, Y. In Mori, K. & Hahn, H. K., editors, Medical Imaging: Computer-Aided Diagnosis, volume 10950, of SPIE Proceedings, pages 109500Y, 2019. SPIE.
2D and 3D bladder segmentation using U-Net-based deep-learning. [link]Link  2D and 3D bladder segmentation using U-Net-based deep-learning. [link]Paper  bibtex   
@inproceedings{conf/micad/MaH0CCCCSZL19,
  added-at = {2020-11-21T00:00:00.000+0100},
  author = {Ma, Xiangyuan and Hadjiiski, Lubomir M. and Wei, Jun and Chan, Heang-Ping and Cha, Kenny H. and Cohan, Richard H. and Caoili, Elaine M. and Samala, Ravi and Zhou, Chuan and Lu, Yao},
  biburl = {https://www.bibsonomy.org/bibtex/2667eb4ff5176cb292b4b4cfe2503a864/dblp},
  booktitle = {Medical Imaging: Computer-Aided Diagnosis},
  crossref = {conf/micad/2019},
  editor = {Mori, Kensaku and Hahn, Horst K.},
  ee = {https://doi.org/10.1117/12.2511890},
  interhash = {d48042f70c349bdc81545728921b6a3a},
  intrahash = {667eb4ff5176cb292b4b4cfe2503a864},
  keywords = {dblp},
  pages = {109500Y},
  publisher = {SPIE},
  series = {SPIE Proceedings},
  timestamp = {2020-11-23T11:34:53.000+0100},
  title = {2D and 3D bladder segmentation using U-Net-based deep-learning.},
  url = {http://dblp.uni-trier.de/db/conf/micad/micad2019.html#MaH0CCCCSZL19},
  volume = 10950,
  year = 2019
}

Downloads: 0