Endoreplication mediates cell size control via mechanochemical signaling from cell wall. Ma, Y., Jonsson, K., Aryal, B., De Veylder, L., Hamant, O., & Bhalerao, R. P. Science Advances, 8(49):eabq2047, December, 2022.
Endoreplication mediates cell size control via mechanochemical signaling from cell wall [link]Paper  doi  abstract   bibtex   
Endoreplication is an evolutionarily conserved mechanism for increasing nuclear DNA content (ploidy). Ploidy frequently scales with final cell and organ size, suggesting a key role for endoreplication in these processes. However, exceptions exist, and, consequently, the endoreplication-size nexus remains enigmatic. Here, we show that prolonged tissue folding at the apical hook in Arabidopsis requires endoreplication asymmetry under the control of an auxin gradient. We identify a molecular pathway linking endoreplication levels to cell size through cell wall remodeling and stiffness modulation. We find that endoreplication is not only permissive for growth: Endoreplication reduction enhances wall stiffening, actively reducing cell size. The cell wall integrity kinase THESEUS plays a key role in this feedback loop. Our data thus explain the nonlinearity between ploidy levels and size while also providing a molecular mechanism linking mechanochemical signaling with endoreplication-mediated dynamic control of cell growth.
@article{ma_endoreplication_2022,
	title = {Endoreplication mediates cell size control via mechanochemical signaling from cell wall},
	volume = {8},
	url = {https://www.science.org/doi/10.1126/sciadv.abq2047},
	doi = {10.1126/sciadv.abq2047},
	abstract = {Endoreplication is an evolutionarily conserved mechanism for increasing nuclear DNA content (ploidy). Ploidy frequently scales with final cell and organ size, suggesting a key role for endoreplication in these processes. However, exceptions exist, and, consequently, the endoreplication-size nexus remains enigmatic. Here, we show that prolonged tissue folding at the apical hook in Arabidopsis requires endoreplication asymmetry under the control of an auxin gradient. We identify a molecular pathway linking endoreplication levels to cell size through cell wall remodeling and stiffness modulation. We find that endoreplication is not only permissive for growth: Endoreplication reduction enhances wall stiffening, actively reducing cell size. The cell wall integrity kinase THESEUS plays a key role in this feedback loop. Our data thus explain the nonlinearity between ploidy levels and size while also providing a molecular mechanism linking mechanochemical signaling with endoreplication-mediated dynamic control of cell growth.},
	number = {49},
	urldate = {2022-12-16},
	journal = {Science Advances},
	author = {Ma, Yuan and Jonsson, Kristoffer and Aryal, Bibek and De Veylder, Lieven and Hamant, Olivier and Bhalerao, Rishikesh P.},
	month = dec,
	year = {2022},
	pages = {eabq2047},
}

Downloads: 0