A novel object tracking algorithm based on compressed sensing and entropy of information. Ma, D., Yu, Z., Yu, J., & Pang, W. Mathematical Problems in Engineering, Hindawi Publishing Corporation, June, 2015. Acknowledgments This research is supported by (1) the Ph.D. Programs Foundation of Ministry of Education of China under Grant no. 20120061110045, (2) the Science and Technology Development Projects of Jilin Province of China under Grant no. 20150204007G X, and (3) the Key Laboratory for Symbol Computation and Knowledge Engineering of the National Education Ministry of China.
doi  abstract   bibtex   
Object tracking has always been a hot research topic in the field of computer vision; its purpose is to track objects with specific characteristics or representation and estimate the information of objects such as their locations, sizes, and rotation angles in the current frame. Object tracking in complex scenes will usually encounter various sorts of challenges, such as location change, dimension change, illumination change, perception change, and occlusion. This paper proposed a novel object tracking algorithm based on compressed sensing and information entropy to address these challenges. First, objects are characterized by the Haar (Haar-like) and ORB features. Second, the dimensions of computation space of the Haar and ORB features are effectively reduced through compressed sensing. Then the above-mentioned features are fused based on information entropy. Finally, in the particle filter framework, an object location was obtained by selecting candidate object locations in the current frame from the local context neighboring the optimal locations in the last frame. Our extensive experimental results demonstrated that this method was able to effectively address the challenges of perception change, illumination change, and large area occlusion, which made it achieve better performance than existing approaches such as MIL and CT.
@article{3a504e7dd92c42689cc0aa9b117365b7,  title     = "A novel object tracking algorithm based on compressed sensing and entropy of information",  abstract  = "Object tracking has always been a hot research topic in the field of computer vision; its purpose is to track objects with specific characteristics or representation and estimate the information of objects such as their locations, sizes, and rotation angles in the current frame. Object tracking in complex scenes will usually encounter various sorts of challenges, such as location change, dimension change, illumination change, perception change, and occlusion. This paper proposed a novel object tracking algorithm based on compressed sensing and information entropy to address these challenges. First, objects are characterized by the Haar (Haar-like) and ORB features. Second, the dimensions of computation space of the Haar and ORB features are effectively reduced through compressed sensing. Then the above-mentioned features are fused based on information entropy. Finally, in the particle filter framework, an object location was obtained by selecting candidate object locations in the current frame from the local context neighboring the optimal locations in the last frame. Our extensive experimental results demonstrated that this method was able to effectively address the challenges of perception change, illumination change, and large area occlusion, which made it achieve better performance than existing approaches such as MIL and CT.",  author    = "Ding Ma and Zhezhou Yu and Jinkun Yu and Wei Pang",  note      = "Acknowledgments This research is supported by (1) the Ph.D. Programs Foundation of Ministry of Education of China under Grant no. 20120061110045, (2) the Science and Technology Development Projects of Jilin Province of China under Grant no. 20150204007G X, and (3) the Key Laboratory for Symbol Computation and Knowledge Engineering of the National Education Ministry of China.",  year      = "2015",  month     = jun,  day       = "22",  doi       = "10.1155/2015/628101",  language  = "English",  volume    = "2015",  journal   = "Mathematical Problems in Engineering",  issn      = "1024-123X",  publisher = "Hindawi Publishing Corporation", }

Downloads: 0