Engineering Steps for Mobile Point-of-Care Diagnostic Devices. Malekjahani, A., Sindhwani, S., Syed, A. M., & Chan, W. C. W. Acc. Chem. Res., 52(9):2406–2414, September, 2019. Publisher: American Chemical Society
Engineering Steps for Mobile Point-of-Care Diagnostic Devices [link]Paper  Engineering Steps for Mobile Point-of-Care Diagnostic Devices [pdf]Paper  doi  abstract   bibtex   1 download  
ConspectusMobile phone technology is a perfect companion for point-of-care diagnostics as they come equipped with advanced processors, high resolution cameras, and network connectivity. Despite several academic pursuits, only a few mobile phone diagnostics have been tested in the field, commercialized or achieved regulatory approval. This review will address the challenges associated with developing mobile diagnostics and suggest strategies to overcome them. We aim to provide a resource for researchers to accelerate the development of new diagnostics. Our Account includes an overview of published mobile phone diagnostics and highlights lessons learned from their approach to diagnostic development. Also, we have included recommendations from regulatory and public health agencies, such as the U.S. Food and Drug Administration and World Health Organization, to further guide researchers.We believe that the development of mobile phone point-of-care diagnostics takes place in four distinct steps: (1) Needs and Value Assessment, (2) Technology Development, (3) Preclinical Verification, and (4) Clinical Validation and Field Trials. During each step, we outline developmental strategies to help researchers avoid potential challenges. (1) Researchers commonly develop devices to maximize technical parameters such as sensitivity and time which do not necessarily translate to increased clinical impact. Researchers must focus on assessing specific diagnostic needs and the value which a potential device would offer. (2) Often, researchers claim they have developed devices for feasible implementation at the point-of-care, yet they rely on laboratory resources. Researchers must develop equipment-free devices which are agnostic to any mobile phone. (3) Another challenge researchers face is decreased performance during field evaluations relative to initial laboratory verification. Researchers must ensure that they simulate the field conditions during laboratory verification to achieve successful translation. (4) Finally, proper field testing of devices must be performed in conditions which match that of the final intended use.The future of mobile phone point-of-care diagnostic devices is bright and has the potential to radically change how patients are diagnosed. Before we reach this point, researchers must take a step backward and focus on the first-principles of basic research. The widespread adoption and rapid scaling of these devices can only be achieved once the fundamentals have been considered. The insights and strategies provided here will help researchers avoid pitfalls, streamline development and make better decisions during the development of new diagnostics. Further, we believe this Account can help push the field of mobile diagnostics toward increased productivity, leading to more approved devices and ultimately helping curb the burden of disease worldwide.

Downloads: 1