Can connectionism save constructivism?. Marcus, G. F Cognition, 66(2):153-82, 1998. abstract bibtex Constructivism is the Piagetian notion that learning leads the child to develop new types of representations. For example, on the Piagetian view, a child is born without knowing that objects persist in time even when they are occluded; through a process of learning, the child comes to know that objects persist in time. The trouble with this view has always been the lack of a concrete, computational account of how a learning mechanism could lead to such a change. Recently, however, in a book entitled Rethinking Innateness. Elman et al. (Elman, J.L., Bates, E., Johnson, M.H., Karmiloff-Smith, A., Parisi, D., Plunkett, K., 1996. Rethinking Innateness: A Connectionist Perspective on Development. Cambridge, MA: MIT Press) have claimed that connectionist models might provide an account of the development of new kinds of representations that would not depend on the existence of innate representations. I show that the models described in Rethinking Innateness depend on innately assumed representations and that they do not offer a genuine alternative to nativism. Moreover, I present simulation results which show that these models are incapable of deriving genuine abstract representations that are not presupposed. I then give a formal account of why the models fail to generalize in the ways that humans do. Thus, connectionism, at least in its current form, does not provide any support for constructivism. I conclude by sketching a possible alternative.
@Article{Marcus1998b,
author = {Marcus, Gary F},
journal = {Cognition},
title = {Can connectionism save constructivism?},
year = {1998},
number = {2},
pages = {153-82},
volume = {66},
abstract = {Constructivism is the Piagetian notion that learning leads the child
to develop new types of representations. For example, on the Piagetian
view, a child is born without knowing that objects persist in time
even when they are occluded; through a process of learning, the child
comes to know that objects persist in time. The trouble with this
view has always been the lack of a concrete, computational account
of how a learning mechanism could lead to such a change. Recently,
however, in a book entitled Rethinking Innateness. Elman et al. (Elman,
J.L., Bates, E., Johnson, M.H., Karmiloff-Smith, A., Parisi, D.,
Plunkett, K., 1996. Rethinking Innateness: A Connectionist Perspective
on Development. Cambridge, MA: MIT Press) have claimed that connectionist
models might provide an account of the development of new kinds of
representations that would not depend on the existence of innate
representations. I show that the models described in Rethinking Innateness
depend on innately assumed representations and that they do not offer
a genuine alternative to nativism. Moreover, I present simulation
results which show that these models are incapable of deriving genuine
abstract representations that are not presupposed. I then give a
formal account of why the models fail to generalize in the ways that
humans do. Thus, connectionism, at least in its current form, does
not provide any support for constructivism. I conclude by sketching
a possible alternative.},
keywords = {Computing Methodologies, Human, Language, Learning, Mental Processes, Models, Theoretical, Stochastic Processes, Support, U.S. Gov't, Non-P.H.S., Cognition, Linguistics, Neural Networks (Computer), Practice (Psychology), Non-U.S. Gov't, Memory, Psychological, Task Performance and Analysis, Time Factors, Visual Perception, Adult, Attention, Discrimination Learning, Female, Male, Short-Term, Mental Recall, Orientation, Pattern Recognition, Visual, Perceptual Masking, Reading, Concept Formation, Form Perception, Animals, Corpus Striatum, Shrews, P.H.S., Visual Cortex, Visual Pathways, Acoustic Stimulation, Auditory Cortex, Auditory Perception, Cochlea, Ear, Gerbillinae, Glycine, Hearing, Neurons, Space Perception, Strychnine, Adolescent, Decision Making, Reaction Time, Astrocytoma, Brain Mapping, Brain Neoplasms, Cerebral Cortex, Electric Stimulation, Electrophysiology, Epilepsy, Temporal Lobe, Evoked Potentials, Frontal Lobe, Noise, Parietal Lobe, Scalp, Child, Language Development, Psycholinguistics, Brain, Perception, Speech, Vocalization, Animal, Discrimination (Psychology), Hippocampus, Rats, Calcium, Chelating Agents, Excitatory Postsynaptic Potentials, Glutamic Acid, Guanosine Diphosphate, In Vitro, Neuronal Plasticity, Pyramidal Cells, Receptors, AMPA, Metabotropic Glutamate, N-Methyl-D-Aspartate, Somatosensory Cortex, Synapses, Synaptic Transmission, Thionucleotides, Action Potentials, Calcium Channels, L-Type, Electric Conductivity, Entorhinal Cortex, Neurological, Long-Evans, Infant, Mathematics, Statistics, Probability Learning, Problem Solving, Psychophysics, Association Learning, Child Psychology, Habituation (Psychophysiology), Probability Theory, Analysis of Variance, Semantics, Symbolism, Behavior, Eye Movements, Macaca mulatta, Prefrontal Cortex, Cats, Dogs, Haplorhini, Photic Stimulation, Electroencephalography, Nervous System Physiology, Darkness, Grasshoppers, Light, Membrane Potentials, Neural Inhibition, Afferent, Picrotoxin, Vision, Deoxyglucose, Injections, Microspheres, Neural Pathways, Rhodamines, Choice Behavior, Speech Perception, Verbal Learning, Dominance, Cerebral, Fixation, Ocular, Language Tests, Random Allocation, Comparative Study, Saguinus, Sound Spectrography, Species Specificity, Audiometry, Auditory Threshold, Calibration, Data Interpretation, Statistical, Anesthesia, General, Electrodes, Implanted, Pitch Perception, Sound Localization, Paired-Associate Learning, Serial Learning, Auditory, Age Factors, Motion Perception, Brain Injuries, Computer Simulation, Blindness, Psychomotor Performance, Color Perception, Signal Detection (Psychology), Judgment, ROC Curve, Regression Analysis, Music, Probability, Arm, Cerebrovascular Disorders, Hemiplegia, Movement, Muscle, Skeletal, Myoclonus, Robotics, Magnetoencephalography, Phonetics, Software, Speech Production Measurement, Epilepsies, Partial, Laterality, Stereotaxic Techniques, Germany, Speech Acoustics, Verbal Behavior, Child Development, Instinct, 10585519},
}
Downloads: 0
{"_id":"XtLJ5S825mLzPnPLo","bibbaseid":"marcus-canconnectionismsaveconstructivism-1998","author_short":["Marcus, G. F"],"bibdata":{"bibtype":"article","type":"article","author":[{"propositions":[],"lastnames":["Marcus"],"firstnames":["Gary","F"],"suffixes":[]}],"journal":"Cognition","title":"Can connectionism save constructivism?","year":"1998","number":"2","pages":"153-82","volume":"66","abstract":"Constructivism is the Piagetian notion that learning leads the child to develop new types of representations. For example, on the Piagetian view, a child is born without knowing that objects persist in time even when they are occluded; through a process of learning, the child comes to know that objects persist in time. The trouble with this view has always been the lack of a concrete, computational account of how a learning mechanism could lead to such a change. Recently, however, in a book entitled Rethinking Innateness. Elman et al. (Elman, J.L., Bates, E., Johnson, M.H., Karmiloff-Smith, A., Parisi, D., Plunkett, K., 1996. Rethinking Innateness: A Connectionist Perspective on Development. Cambridge, MA: MIT Press) have claimed that connectionist models might provide an account of the development of new kinds of representations that would not depend on the existence of innate representations. I show that the models described in Rethinking Innateness depend on innately assumed representations and that they do not offer a genuine alternative to nativism. Moreover, I present simulation results which show that these models are incapable of deriving genuine abstract representations that are not presupposed. I then give a formal account of why the models fail to generalize in the ways that humans do. Thus, connectionism, at least in its current form, does not provide any support for constructivism. I conclude by sketching a possible alternative.","keywords":"Computing Methodologies, Human, Language, Learning, Mental Processes, Models, Theoretical, Stochastic Processes, Support, U.S. Gov't, Non-P.H.S., Cognition, Linguistics, Neural Networks (Computer), Practice (Psychology), Non-U.S. Gov't, Memory, Psychological, Task Performance and Analysis, Time Factors, Visual Perception, Adult, Attention, Discrimination Learning, Female, Male, Short-Term, Mental Recall, Orientation, Pattern Recognition, Visual, Perceptual Masking, Reading, Concept Formation, Form Perception, Animals, Corpus Striatum, Shrews, P.H.S., Visual Cortex, Visual Pathways, Acoustic Stimulation, Auditory Cortex, Auditory Perception, Cochlea, Ear, Gerbillinae, Glycine, Hearing, Neurons, Space Perception, Strychnine, Adolescent, Decision Making, Reaction Time, Astrocytoma, Brain Mapping, Brain Neoplasms, Cerebral Cortex, Electric Stimulation, Electrophysiology, Epilepsy, Temporal Lobe, Evoked Potentials, Frontal Lobe, Noise, Parietal Lobe, Scalp, Child, Language Development, Psycholinguistics, Brain, Perception, Speech, Vocalization, Animal, Discrimination (Psychology), Hippocampus, Rats, Calcium, Chelating Agents, Excitatory Postsynaptic Potentials, Glutamic Acid, Guanosine Diphosphate, In Vitro, Neuronal Plasticity, Pyramidal Cells, Receptors, AMPA, Metabotropic Glutamate, N-Methyl-D-Aspartate, Somatosensory Cortex, Synapses, Synaptic Transmission, Thionucleotides, Action Potentials, Calcium Channels, L-Type, Electric Conductivity, Entorhinal Cortex, Neurological, Long-Evans, Infant, Mathematics, Statistics, Probability Learning, Problem Solving, Psychophysics, Association Learning, Child Psychology, Habituation (Psychophysiology), Probability Theory, Analysis of Variance, Semantics, Symbolism, Behavior, Eye Movements, Macaca mulatta, Prefrontal Cortex, Cats, Dogs, Haplorhini, Photic Stimulation, Electroencephalography, Nervous System Physiology, Darkness, Grasshoppers, Light, Membrane Potentials, Neural Inhibition, Afferent, Picrotoxin, Vision, Deoxyglucose, Injections, Microspheres, Neural Pathways, Rhodamines, Choice Behavior, Speech Perception, Verbal Learning, Dominance, Cerebral, Fixation, Ocular, Language Tests, Random Allocation, Comparative Study, Saguinus, Sound Spectrography, Species Specificity, Audiometry, Auditory Threshold, Calibration, Data Interpretation, Statistical, Anesthesia, General, Electrodes, Implanted, Pitch Perception, Sound Localization, Paired-Associate Learning, Serial Learning, Auditory, Age Factors, Motion Perception, Brain Injuries, Computer Simulation, Blindness, Psychomotor Performance, Color Perception, Signal Detection (Psychology), Judgment, ROC Curve, Regression Analysis, Music, Probability, Arm, Cerebrovascular Disorders, Hemiplegia, Movement, Muscle, Skeletal, Myoclonus, Robotics, Magnetoencephalography, Phonetics, Software, Speech Production Measurement, Epilepsies, Partial, Laterality, Stereotaxic Techniques, Germany, Speech Acoustics, Verbal Behavior, Child Development, Instinct, 10585519","bibtex":"@Article{Marcus1998b,\n author = {Marcus, Gary F},\n journal = {Cognition},\n title = {Can connectionism save constructivism?},\n year = {1998},\n number = {2},\n pages = {153-82},\n volume = {66},\n abstract = {Constructivism is the Piagetian notion that learning leads the child\n\tto develop new types of representations. For example, on the Piagetian\n\tview, a child is born without knowing that objects persist in time\n\teven when they are occluded; through a process of learning, the child\n\tcomes to know that objects persist in time. The trouble with this\n\tview has always been the lack of a concrete, computational account\n\tof how a learning mechanism could lead to such a change. Recently,\n\thowever, in a book entitled Rethinking Innateness. Elman et al. (Elman,\n\tJ.L., Bates, E., Johnson, M.H., Karmiloff-Smith, A., Parisi, D.,\n\tPlunkett, K., 1996. Rethinking Innateness: A Connectionist Perspective\n\ton Development. Cambridge, MA: MIT Press) have claimed that connectionist\n\tmodels might provide an account of the development of new kinds of\n\trepresentations that would not depend on the existence of innate\n\trepresentations. I show that the models described in Rethinking Innateness\n\tdepend on innately assumed representations and that they do not offer\n\ta genuine alternative to nativism. Moreover, I present simulation\n\tresults which show that these models are incapable of deriving genuine\n\tabstract representations that are not presupposed. I then give a\n\tformal account of why the models fail to generalize in the ways that\n\thumans do. Thus, connectionism, at least in its current form, does\n\tnot provide any support for constructivism. I conclude by sketching\n\ta possible alternative.},\n keywords = {Computing Methodologies, Human, Language, Learning, Mental Processes, Models, Theoretical, Stochastic Processes, Support, U.S. Gov't, Non-P.H.S., Cognition, Linguistics, Neural Networks (Computer), Practice (Psychology), Non-U.S. Gov't, Memory, Psychological, Task Performance and Analysis, Time Factors, Visual Perception, Adult, Attention, Discrimination Learning, Female, Male, Short-Term, Mental Recall, Orientation, Pattern Recognition, Visual, Perceptual Masking, Reading, Concept Formation, Form Perception, Animals, Corpus Striatum, Shrews, P.H.S., Visual Cortex, Visual Pathways, Acoustic Stimulation, Auditory Cortex, Auditory Perception, Cochlea, Ear, Gerbillinae, Glycine, Hearing, Neurons, Space Perception, Strychnine, Adolescent, Decision Making, Reaction Time, Astrocytoma, Brain Mapping, Brain Neoplasms, Cerebral Cortex, Electric Stimulation, Electrophysiology, Epilepsy, Temporal Lobe, Evoked Potentials, Frontal Lobe, Noise, Parietal Lobe, Scalp, Child, Language Development, Psycholinguistics, Brain, Perception, Speech, Vocalization, Animal, Discrimination (Psychology), Hippocampus, Rats, Calcium, Chelating Agents, Excitatory Postsynaptic Potentials, Glutamic Acid, Guanosine Diphosphate, In Vitro, Neuronal Plasticity, Pyramidal Cells, Receptors, AMPA, Metabotropic Glutamate, N-Methyl-D-Aspartate, Somatosensory Cortex, Synapses, Synaptic Transmission, Thionucleotides, Action Potentials, Calcium Channels, L-Type, Electric Conductivity, Entorhinal Cortex, Neurological, Long-Evans, Infant, Mathematics, Statistics, Probability Learning, Problem Solving, Psychophysics, Association Learning, Child Psychology, Habituation (Psychophysiology), Probability Theory, Analysis of Variance, Semantics, Symbolism, Behavior, Eye Movements, Macaca mulatta, Prefrontal Cortex, Cats, Dogs, Haplorhini, Photic Stimulation, Electroencephalography, Nervous System Physiology, Darkness, Grasshoppers, Light, Membrane Potentials, Neural Inhibition, Afferent, Picrotoxin, Vision, Deoxyglucose, Injections, Microspheres, Neural Pathways, Rhodamines, Choice Behavior, Speech Perception, Verbal Learning, Dominance, Cerebral, Fixation, Ocular, Language Tests, Random Allocation, Comparative Study, Saguinus, Sound Spectrography, Species Specificity, Audiometry, Auditory Threshold, Calibration, Data Interpretation, Statistical, Anesthesia, General, Electrodes, Implanted, Pitch Perception, Sound Localization, Paired-Associate Learning, Serial Learning, Auditory, Age Factors, Motion Perception, Brain Injuries, Computer Simulation, Blindness, Psychomotor Performance, Color Perception, Signal Detection (Psychology), Judgment, ROC Curve, Regression Analysis, Music, Probability, Arm, Cerebrovascular Disorders, Hemiplegia, Movement, Muscle, Skeletal, Myoclonus, Robotics, Magnetoencephalography, Phonetics, Software, Speech Production Measurement, Epilepsies, Partial, Laterality, Stereotaxic Techniques, Germany, Speech Acoustics, Verbal Behavior, Child Development, Instinct, 10585519},\n}\n\n","author_short":["Marcus, G. F"],"key":"Marcus1998b","id":"Marcus1998b","bibbaseid":"marcus-canconnectionismsaveconstructivism-1998","role":"author","urls":{},"keyword":["Computing Methodologies","Human","Language","Learning","Mental Processes","Models","Theoretical","Stochastic Processes","Support","U.S. Gov't","Non-P.H.S.","Cognition","Linguistics","Neural Networks (Computer)","Practice (Psychology)","Non-U.S. Gov't","Memory","Psychological","Task Performance and Analysis","Time Factors","Visual Perception","Adult","Attention","Discrimination Learning","Female","Male","Short-Term","Mental Recall","Orientation","Pattern Recognition","Visual","Perceptual Masking","Reading","Concept Formation","Form Perception","Animals","Corpus Striatum","Shrews","P.H.S.","Visual Cortex","Visual Pathways","Acoustic Stimulation","Auditory Cortex","Auditory Perception","Cochlea","Ear","Gerbillinae","Glycine","Hearing","Neurons","Space Perception","Strychnine","Adolescent","Decision Making","Reaction Time","Astrocytoma","Brain Mapping","Brain Neoplasms","Cerebral Cortex","Electric Stimulation","Electrophysiology","Epilepsy","Temporal Lobe","Evoked Potentials","Frontal Lobe","Noise","Parietal Lobe","Scalp","Child","Language Development","Psycholinguistics","Brain","Perception","Speech","Vocalization","Animal","Discrimination (Psychology)","Hippocampus","Rats","Calcium","Chelating Agents","Excitatory Postsynaptic Potentials","Glutamic Acid","Guanosine Diphosphate","In Vitro","Neuronal Plasticity","Pyramidal Cells","Receptors","AMPA","Metabotropic Glutamate","N-Methyl-D-Aspartate","Somatosensory Cortex","Synapses","Synaptic Transmission","Thionucleotides","Action Potentials","Calcium Channels","L-Type","Electric Conductivity","Entorhinal Cortex","Neurological","Long-Evans","Infant","Mathematics","Statistics","Probability Learning","Problem Solving","Psychophysics","Association Learning","Child Psychology","Habituation (Psychophysiology)","Probability Theory","Analysis of Variance","Semantics","Symbolism","Behavior","Eye Movements","Macaca mulatta","Prefrontal Cortex","Cats","Dogs","Haplorhini","Photic Stimulation","Electroencephalography","Nervous System Physiology","Darkness","Grasshoppers","Light","Membrane Potentials","Neural Inhibition","Afferent","Picrotoxin","Vision","Deoxyglucose","Injections","Microspheres","Neural Pathways","Rhodamines","Choice Behavior","Speech Perception","Verbal Learning","Dominance","Cerebral","Fixation","Ocular","Language Tests","Random Allocation","Comparative Study","Saguinus","Sound Spectrography","Species Specificity","Audiometry","Auditory Threshold","Calibration","Data Interpretation","Statistical","Anesthesia","General","Electrodes","Implanted","Pitch Perception","Sound Localization","Paired-Associate Learning","Serial Learning","Auditory","Age Factors","Motion Perception","Brain Injuries","Computer Simulation","Blindness","Psychomotor Performance","Color Perception","Signal Detection (Psychology)","Judgment","ROC Curve","Regression Analysis","Music","Probability","Arm","Cerebrovascular Disorders","Hemiplegia","Movement","Muscle","Skeletal","Myoclonus","Robotics","Magnetoencephalography","Phonetics","Software","Speech Production Measurement","Epilepsies","Partial","Laterality","Stereotaxic Techniques","Germany","Speech Acoustics","Verbal Behavior","Child Development","Instinct","10585519"],"metadata":{"authorlinks":{}}},"bibtype":"article","biburl":"https://endress.org/publications/ansgar.bib","dataSources":["xPGxHAeh3vZpx4yyE","TXa55dQbNoWnaGmMq"],"keywords":["computing methodologies","human","language","learning","mental processes","models","theoretical","stochastic processes","support","u.s. gov't","non-p.h.s.","cognition","linguistics","neural networks (computer)","practice (psychology)","non-u.s. gov't","memory","psychological","task performance and analysis","time factors","visual perception","adult","attention","discrimination learning","female","male","short-term","mental recall","orientation","pattern recognition","visual","perceptual masking","reading","concept formation","form perception","animals","corpus striatum","shrews","p.h.s.","visual cortex","visual pathways","acoustic stimulation","auditory cortex","auditory perception","cochlea","ear","gerbillinae","glycine","hearing","neurons","space perception","strychnine","adolescent","decision making","reaction time","astrocytoma","brain mapping","brain neoplasms","cerebral cortex","electric stimulation","electrophysiology","epilepsy","temporal lobe","evoked potentials","frontal lobe","noise","parietal lobe","scalp","child","language development","psycholinguistics","brain","perception","speech","vocalization","animal","discrimination (psychology)","hippocampus","rats","calcium","chelating agents","excitatory postsynaptic potentials","glutamic acid","guanosine diphosphate","in vitro","neuronal plasticity","pyramidal cells","receptors","ampa","metabotropic glutamate","n-methyl-d-aspartate","somatosensory cortex","synapses","synaptic transmission","thionucleotides","action potentials","calcium channels","l-type","electric conductivity","entorhinal cortex","neurological","long-evans","infant","mathematics","statistics","probability learning","problem solving","psychophysics","association learning","child psychology","habituation (psychophysiology)","probability theory","analysis of variance","semantics","symbolism","behavior","eye movements","macaca mulatta","prefrontal cortex","cats","dogs","haplorhini","photic stimulation","electroencephalography","nervous system physiology","darkness","grasshoppers","light","membrane potentials","neural inhibition","afferent","picrotoxin","vision","deoxyglucose","injections","microspheres","neural pathways","rhodamines","choice behavior","speech perception","verbal learning","dominance","cerebral","fixation","ocular","language tests","random allocation","comparative study","saguinus","sound spectrography","species specificity","audiometry","auditory threshold","calibration","data interpretation","statistical","anesthesia","general","electrodes","implanted","pitch perception","sound localization","paired-associate learning","serial learning","auditory","age factors","motion perception","brain injuries","computer simulation","blindness","psychomotor performance","color perception","signal detection (psychology)","judgment","roc curve","regression analysis","music","probability","arm","cerebrovascular disorders","hemiplegia","movement","muscle","skeletal","myoclonus","robotics","magnetoencephalography","phonetics","software","speech production measurement","epilepsies","partial","laterality","stereotaxic techniques","germany","speech acoustics","verbal behavior","child development","instinct","10585519"],"search_terms":["connectionism","save","constructivism","marcus"],"title":"Can connectionism save constructivism?","year":1998}