Kinetics of sulfur removal from a liquid coal residue in thermal, hydrothermal, and hydrocatalytic cracking. Martínez, M T, Benito, A M, Callejas, M A, & Trasobares, S Energy and Fuels, 12(2):365–370, Inst. de Carboquímica CSIC, Apartado 589, 50080 Zaragoza, Spain, 1998.
Kinetics of sulfur removal from a liquid coal residue in thermal, hydrothermal, and hydrocatalytic cracking [link]Paper  abstract   bibtex   
An asphaltenic residue from deasphalting a synthetic crude obtained by direct liquefaction of a subbituminous Spanish coal was submitted to several upgrading routes. In this paper, the kinetics of sulfur-removal reactions in thermal, hydrothermal, and hydrocatalytic cracking are reported. The sulfur-removal reactions fit a 2.7 kinetic order for the thermal process, a 3.8 kinetic order for the hydrothermal process, and a 4.7 kinetic order for the hydrocatalytic process, the activation energy being lowest in the hydrocatalytic process. The activation energy for the thermal processes is higher in the presence of hydrogen. The percentages of sulfur removal range from 3.6 to 56.6 wt % in thermal cracking, from 15.3 to 61.5 wt % in hydrothermal cracking, and from 19.1 to 55.0 wt % in hydrocatalytic cracking. The percentages of sulfur removal at low reaction times for the three processes increase in the order thermal < hydrothermal < hydrocatalytic.
@article{Martinez1998,
abstract = {An asphaltenic residue from deasphalting a synthetic crude obtained by direct liquefaction of a subbituminous Spanish coal was submitted to several upgrading routes. In this paper, the kinetics of sulfur-removal reactions in thermal, hydrothermal, and hydrocatalytic cracking are reported. The sulfur-removal reactions fit a 2.7 kinetic order for the thermal process, a 3.8 kinetic order for the hydrothermal process, and a 4.7 kinetic order for the hydrocatalytic process, the activation energy being lowest in the hydrocatalytic process. The activation energy for the thermal processes is higher in the presence of hydrogen. The percentages of sulfur removal range from 3.6 to 56.6 wt % in thermal cracking, from 15.3 to 61.5 wt % in hydrothermal cracking, and from 19.1 to 55.0 wt % in hydrocatalytic cracking. The percentages of sulfur removal at low reaction times for the three processes increase in the order thermal < hydrothermal < hydrocatalytic.},
address = {Inst. de Carboqu\'{\i}mica CSIC, Apartado 589, 50080 Zaragoza, Spain},
annote = {Cited By (since 1996): 3

        
Export Date: 15 January 2013

        
Source: Scopus

        
CODEN: ENFUE

        
Language of Original Document: English

        
Correspondence Address: Mart\'{\i}nez, M.T.; Inst. de Carboqu\'{\i}mica CSIC, Apartado 589, 50080 Zaragoza, Spain; email: mtmartinez@carbon.icb.csic.es

        
References: Weisser, O., Landa, S., (1973) Sulphide Catalysts, Their Properties and Applications, , Pergamon: Oxford, U.K; 
Houalla, M., Broderick, D.H., Sapre, A.V., Nag, N.K., De Beer, V.H.J., Gates, B.C., Kwart, H., (1980) J. Catal., 61, p. 523; 
Ma, X., Sakanishi, K., Mochida, I., (1994) Ind. Eng. Chem. Res., 33, p. 218; 
Willey, C., Iwao, M., Castle, R.N., Lee, M.L., (1981) Anal. Chem., 53, p. 400; 
Kong, R.C., Lee, M.L., (1982) Anal. Chem., 54, p. 1802; 
Kong, R.C., Lee, M.L., Iwao, M., Tominaga, T., Pratap, R., Thompson, R.D., Castle, R.N., (1984) Fuel, 63, p. 702; 
Nishioka, M., Bradshaw, J.B., Lee, M.L., (1985) Anal. Chem., 57, p. 3009; 
Ma, X., Sakanishi, K., Isoda, T., Mochida, I., (1997) Fuel, 76 (4), p. 329; 
Kim, H., Curtis, C.W., (1990) Energy Fuels, 4, p. 206; 
Girgis, M.J., Gates, B.C., (1991) Ind. Eng. Chem. Res., 30, p. 2021; 
Van Parijs, I.A., Froment, G.F., (1986) Ind. Eng. Chem. Prod. Res. Dev., 25, p. 431; 
Curtis, W., Chem, J.H., Tang, Y., (1998) Energy Fuels, 9 (2), p. 195; 
Gray, M.R., Ayasse, A.R., Chan, E.W., Veljkovic, M., (1995) Energy Fuels, 9, p. 500; 
Vanrysselberghe, V., Froment, G.F., (1996) Ind. Eng. Chem. Res., 35, p. 3311; 
Mart\'{\i}nez, M.T., Fernandez, I., Benito, A.M., Cebolla, V., Miranda, J.L., Oelert, H.H., (1993) Fuel Process. Technol., 33, p. 159; 
Fernandez, I., Martinez, M.T., Benito, A.M., Miranda, J.L., (1995) Fuel, 74, p. 32; 
Qader, S.A., Hill, G.R., (1969) Ind. Eng. Chem. Process Des. Dev., 8, p. 98; 
Qader, S.A., Hill, G.R., (1969) Ind. Eng. Chem. Process Des. Dev., 8, p. 456; 
Qader, S.A., Wiser, W.H., Hill, G.R., (1972) Fuel, 51, p. 54; 
Gollakota, S.V., (1984) An Investigation of Mass Transfer Phenomena in Coal Liquefaction: An Assessment of Resistances and Reactor Types, , Ph.D. Dissertation, Auburn University; 
Levenspiel, O., (1990) Ingenieria de las Reacciones Quimicas, p. 56. , Revert\'{e} Eds.: Barcelona; 
Martinez, M.T., Benito, A.M., Callejas, M.A., (1997) Fuel, 76 (9), p. 871; 
Benito, A.M., Martinez, M.T., Fernandez, I., Miranda, J.L., (1996) Energy Fuels, 10, p. 401; 
Benito, A.M., Martinez, M.T., (1996) Energy Fuels, 10, p. 1235; 
Notarbartolo, M., Menegazo, C., Kuhn, J., (1979) Hydrocarbon Process, 57 (9), p. 114; 
Miki, Y., Yamadaya, S., Oba, M., Sugimoto, Y., (1983) J. Catal., 83, p. 371; 
Vrinat, M.L., (1983) Appl. Catal., 6, p. 137},
author = {Mart\'{\i}nez, M T and Benito, A M and Callejas, M A and Trasobares, S},
issn = {08870624 (ISSN)},
journal = {Energy and Fuels},
keywords = {Activation energy,Catalysis,Coal,Desulfurization,Hydrocracking,Hydrogen,Hydrothermal cracking,Liquid coal,Reaction kinetics,Thermal cracking},
number = {2},
pages = {365--370},
title = {{Kinetics of sulfur removal from a liquid coal residue in thermal, hydrothermal, and hydrocatalytic cracking}},
url = {https://www.scopus.com/inward/record.url?eid=2-s2.0-0032011075&partnerID=40&md5=f6c4805853295003a9ef7bf72e390c4b},
volume = {12},
year = {1998}
}

Downloads: 0