Understanding Complex Magnetic Spin Textures with Simulation-Assisted Lorentz Transmission Electron Microscopy. McCray, A. R., Cote, T., Li, Y., Petford-Long, A. K., & Phatak, C. Physical Review Applied, 15(4):044025, April, 2021. Publisher: American Physical Society
Understanding Complex Magnetic Spin Textures with Simulation-Assisted Lorentz Transmission Electron Microscopy [link]Paper  doi  abstract   bibtex   
There is an increased interest in topologically nontrivial magnetic spin textures such as skyrmions and chiral domain-wall solitons, both from a point of fundamental physics understanding as well as potential technological interest in low-power memory applications. In order to control their behavior, it is necessary to understand their complex spin texture at the nanoscale. Lorentz transmission electron microscopy (LTEM) is a suitable technique for studying these systems due to its high spatial resolution and capability to simultaneously characterize magnetic texture and microstructure. In this work, we present the application of PyLorentz, an open-source software suite that we have developed, for quantitative image analysis of Néel-type skyrmions in thin-film heterostructures. PyLorentz enhances LTEM capabilities by enabling reconstruction of magnetic induction maps from experimental images, as well as simulating LTEM images using micromagnetic simulation data. We demonstrate this for simulated Néel skyrmions as well as experimental data from [Pt/Co/W] multilayer heterostructures. We also show how simulation-assisted LTEM analysis is crucial for understanding these complex magnetic spin textures, in which the reconstructed magnetic induction map (seen in the LTEM images) differs significantly from the magnetization configuration.
@article{mccray_understanding_2021,
	title = {Understanding {Complex} {Magnetic} {Spin} {Textures} with {Simulation}-{Assisted} {Lorentz} {Transmission} {Electron} {Microscopy}},
	volume = {15},
	url = {https://link.aps.org/doi/10.1103/PhysRevApplied.15.044025},
	doi = {10.1103/PhysRevApplied.15.044025},
	abstract = {There is an increased interest in topologically nontrivial magnetic spin textures such as skyrmions and chiral domain-wall solitons, both from a point of fundamental physics understanding as well as potential technological interest in low-power memory applications. In order to control their behavior, it is necessary to understand their complex spin texture at the nanoscale. Lorentz transmission electron microscopy (LTEM) is a suitable technique for studying these systems due to its high spatial resolution and capability to simultaneously characterize magnetic texture and microstructure. In this work, we present the application of PyLorentz, an open-source software suite that we have developed, for quantitative image analysis of Néel-type skyrmions in thin-film heterostructures. PyLorentz enhances LTEM capabilities by enabling reconstruction of magnetic induction maps from experimental images, as well as simulating LTEM images using micromagnetic simulation data. We demonstrate this for simulated Néel skyrmions as well as experimental data from [Pt/Co/W] multilayer heterostructures. We also show how simulation-assisted LTEM analysis is crucial for understanding these complex magnetic spin textures, in which the reconstructed magnetic induction map (seen in the LTEM images) differs significantly from the magnetization configuration.},
	number = {4},
	urldate = {2021-06-24},
	journal = {Physical Review Applied},
	author = {McCray, Arthur R.C. and Cote, Timothy and Li, Yue and Petford-Long, Amanda K. and Phatak, Charudatta},
	month = apr,
	year = {2021},
	note = {Publisher: American Physical Society},
	pages = {044025},
}

Downloads: 0