Reservoir interactions during Bose-Einstein condensation: Modified critical scaling in the Kibble-Zurek mechanism of defect formation. McDonald, R. and Bradley, A. Physical Review A - Atomic, Molecular, and Optical Physics, 2015. cited By 2
Reservoir interactions during Bose-Einstein condensation: Modified critical scaling in the Kibble-Zurek mechanism of defect formation [link]Paper  doi  abstract   bibtex   
As a test of the Kibble-Zurek mechanism (KZM) of defect formation, we simulate the Bose-Einstein condensation transition in a toroidally confined Bose gas by using the stochastic projected Gross-Pitaevskii equation, with and without the energy-damping reservoir interaction. Energy-damping alters the scaling of the winding-number distribution with the quench time - a departure from the universal KZM theory that relies on equilibrium critical exponents. Numerical values are obtained for the correlation-length critical exponent ν and the dynamical critical exponent z for each variant of reservoir interaction theory. The energy-damping reservoir interactions cause significant modification of the dynamical critical exponent of the phase transition, while preserving the essential KZM critical scaling behavior. Comparison of numerical and analytical two-point correlation functions further illustrates the effect of energy damping on the correlation length during freeze-out. © 2015 American Physical Society. ©2015 American Physical Society.
@ARTICLE{McDonald2015,
author={McDonald, R.G. and Bradley, A.S.},
title={Reservoir interactions during Bose-Einstein condensation: Modified critical scaling in the Kibble-Zurek mechanism of defect formation},
journal={Physical Review A - Atomic, Molecular, and Optical Physics},
year={2015},
volume={92},
number={3},
doi={10.1103/PhysRevA.92.033616},
art_number={033616},
note={cited By 2},
url={https://www.scopus.com/inward/record.uri?eid=2-s2.0-84942155387&partnerID=40&md5=c4764e70e14c61bbce5de549557e3e5c},
affiliation={Department of Physics, QSO, Centre for Quantum Science, Dodd-Walls Centre for Photonic and Quantum Technologies, University of Otago, Dunedin, New Zealand},
abstract={As a test of the Kibble-Zurek mechanism (KZM) of defect formation, we simulate the Bose-Einstein condensation transition in a toroidally confined Bose gas by using the stochastic projected Gross-Pitaevskii equation, with and without the energy-damping reservoir interaction. Energy-damping alters the scaling of the winding-number distribution with the quench time - a departure from the universal KZM theory that relies on equilibrium critical exponents. Numerical values are obtained for the correlation-length critical exponent ν and the dynamical critical exponent z for each variant of reservoir interaction theory. The energy-damping reservoir interactions cause significant modification of the dynamical critical exponent of the phase transition, while preserving the essential KZM critical scaling behavior. Comparison of numerical and analytical two-point correlation functions further illustrates the effect of energy damping on the correlation length during freeze-out. © 2015 American Physical Society. ©2015 American Physical Society.},
references={Kibble, T.W.B., (1976) J. Phys. A: Math. Gen., 9, p. 1387; Kibble, T.W.B., (1980) Phys. Rep., 67, p. 183; Del Campo, A., Zurek, W.H., (2014) Int. J. Mod. Phys. A, 29, p. 1430018; Laguna, P., Zurek, W.H., (1997) Phys. Rev. Lett., 78, p. 2519; Yates, A., Zurek, W.H., (1998) Phys. Rev. Lett., 80, p. 5477; Antunes, N.D., Bettencourt, L.M.A., Zurek, W.H., (1999) Phys. Rev. Lett., 82, p. 2824; Bettencourt, L.M.A., Antunes, N., Zurek, W.H., (2000) Phys. Rev. D, 62, p. 065005; Weiler, C.N., Neely, T.W., Scherer, D.R., Bradley, A.S., Davis, M.J., Anderson, B.P., (2008) Nature (London), 455, p. 948; Damski, B., Zurek, W.H., (2010) Phys. Rev. Lett., 104, p. 160404; Das, A., Sabbatini, J., Zurek, W.H., (2012) Sci. Rep., 2, p. 352; Su, S.-W., Gou, S.-C., Bradley, A.S., Fialko, O., Brand, J., (2013) Phys. Rev. Lett., 110, p. 215302; Gardiner, C.W., Davis, M.J., (2003) J. Phys. B: At., Mol. Opt. Phys., 36, p. 4731; Bradley, A.S., Gardiner, C.W., Davis, M.J., (2008) Phys. Rev. A, 77, p. 033616; Rooney, S.J., Blakie, P.B., Bradley, A.S., (2014) Phys. Rev. e, 89, p. 013302; Rooney, S.J., Blakie, P.B., Bradley, A.S., (2012) Phys. Rev. A, 86, p. 053634; Bradley, A.S., Blakie, P.B., (2014) Phys. Rev. A, 90, p. 023631; Gardiner, C.W., Zoller, P., (1998) Phys. Rev. A, 58, p. 536; Davis, M.J., Morgan, S.A., Burnett, K., (2001) Phys. Rev. Lett., 87, p. 160402; Rooney, S.J., Neely, T.W., Anderson, B.P., Bradley, A.S., (2013) Phys. Rev. A, 88, p. 063620; Anglin, J.R., Zurek, W.H., (1999) Phys. Rev. Lett., 83, p. 1707; Blakie, P.B., Bradley, A.S., Davis, M.J., Ballagh, R.J., Gardiner, C.W., (2008) Adv. Phys., 57, p. 363; Bradley, A.S., Rooney, S.J., McDonald, R.G., arXiv:1507.02023Zurek, W.H., (1985) Nature (London), 317, p. 505; Lamporesi, G., Donadello, S., Serafini, S., Dalfovo, F., Ferrari, G., (2013) Nat. Phys., 9, p. 656; Burger, S., Bongs, K., Dettmer, S., Ertmer, W., Sengstock, K., Sanpera, A., Shlyapnikov, G.V., Lewenstein, M., (1999) Phys. Rev. Lett., 83, p. 5198; Muryshev, A., Shlyapnikov, G.V., Ertmer, W., Sengstock, K., Lewenstein, M., (2002) Phys. Rev. Lett., 89, p. 110401; Jackson, B., Proukakis, N.P., Barenghi, C.F., (2007) Phys. Rev. A, 75, p. 051601; Kagan, Y., Prokof'ev, N.V., Svistunov, B.V., (2000) Phys. Rev. A, 61, p. 045601; Eckel, S., Lee, J.G., Jendrzejewski, F., Murray, N., Clark, C.W., Lobb, C.J., Phillips, W.D., Campbell, G.K., (2014) Nature (London), 506, p. 200; Corman, L., Chomaz, L., Bienaimé, T., Desbuquois, R., Weitenberg, C., Nascimbène, S., Dalibard, J., Beugnon, J., (2014) Phys. Rev. Lett., 113, p. 135302; Bradley, A.S., (2009) Phys. Rev. A, 79, p. 033624; Penrose, O., Onsager, L., (1956) Phys. Rev., 104, p. 576; Hohenberg, P., Halperin, B., (1977) Rev. Mod. Phys., 49, p. 435; Navon, N., Gaunt, A.L., Smith, R.P., Hadzibabic, Z., (2015) Science, 347, p. 167; Campostrini, M., Hasenbusch, M., Pelissetto, A., Vicari, E., (2006) Phys. Rev. B, 74, p. 144506; Lee, M.D., Gardiner, C.W., (2000) Phys. Rev. A, 62, p. 033606; Damle, K., Majumdar, S.N., Sachdev, S., (1996) Phys. Rev. A, 54, p. 5037; Bray, A.J., (2002) Adv. Phys., 51, p. 481; Biroli, G., Cugliandolo, L.F., Sicilia, A., (2010) Phys. Rev. e, 81, p. 050101; Bonart, J., Cugliandolo, L.F., Gambassi, A., J. Stat. Mech.: Theory Exp., 2012, p. P01014; Smacchia, P., Knap, M., Demler, E., Silva, A., (2015) Phys. Rev. B, 91, p. 205136; Davis, M.J., Blakie, P.B., (2006) Phys. Rev. Lett., 96, p. 060404; Sonner, J., Del Campo, A., Zurek, W.H., (2015) Nat. Commun., 6, p. 7406; Adams, A., Chesler, P.M., Liu, H., (2014) Phys. Rev. Lett., 112, p. 151602; Billam, T.P., Reeves, M.T., Bradley, A.S., (2015) Phys. Rev. A, 91, p. 023615},
document_type={Article},
source={Scopus},
}
Downloads: 0