Contribution of linear spatiotemporal receptive field structure to velocity selectivity of simple cells in area 17 of cat. McLean, J & Palmer, L. Vision Res, 29(6):675-9, 1989. abstract bibtex We have examined the spatiotemporal structure of simple receptive fields in the cat's striate cortex by cross-correlating their spike trains with an ensemble of stimuli consisting of stationary bright and dark spots whose position was randomized on each 50 msec frame. Receptive fields were found to be either separable or inseparable in space-time and responses to moving stimuli were predicted from the spatiotemporal structure of the cell under study. Most simple cells with separable spatiotemporal receptive fields were not direction selective. All simple cells with inseparable spatiotemporal receptive fields were found to prefer movement in one direction. The optimal speed and direction were estimable from the slope of individual subregions observed in the space-time plane. The results are consistent with a linear model for direction selectivity.
@Article{McLean1989,
author = {J McLean and LA Palmer},
journal = {Vision Res},
title = {Contribution of linear spatiotemporal receptive field structure to velocity selectivity of simple cells in area 17 of cat.},
year = {1989},
number = {6},
pages = {675-9},
volume = {29},
abstract = {We have examined the spatiotemporal structure of simple receptive
fields in the cat's striate cortex by cross-correlating their spike
trains with an ensemble of stimuli consisting of stationary bright
and dark spots whose position was randomized on each 50 msec frame.
Receptive fields were found to be either separable or inseparable
in space-time and responses to moving stimuli were predicted from
the spatiotemporal structure of the cell under study. Most simple
cells with separable spatiotemporal receptive fields were not direction
selective. All simple cells with inseparable spatiotemporal receptive
fields were found to prefer movement in one direction. The optimal
speed and direction were estimable from the slope of individual subregions
observed in the space-time plane. The results are consistent with
a linear model for direction selectivity.},
keywords = {Computing Methodologies, Human, Language, Learning, Mental Processes, Models, Theoretical, Stochastic Processes, Support, U.S. Gov't, Non-P.H.S., Cognition, Linguistics, Neural Networks (Computer), Practice (Psychology), Non-U.S. Gov't, Memory, Psychological, Task Performance and Analysis, Time Factors, Visual Perception, Adult, Attention, Discrimination Learning, Female, Male, Short-Term, Mental Recall, Orientation, Pattern Recognition, Visual, Perceptual Masking, Reading, Concept Formation, Form Perception, Animals, Corpus Striatum, Shrews, P.H.S., Visual Cortex, Visual Pathways, Acoustic Stimulation, Auditory Cortex, Auditory Perception, Cochlea, Ear, Gerbillinae, Glycine, Hearing, Neurons, Space Perception, Strychnine, Adolescent, Decision Making, Reaction Time, Astrocytoma, Brain Mapping, Brain Neoplasms, Cerebral Cortex, Electric Stimulation, Electrophysiology, Epilepsy, Temporal Lobe, Evoked Potentials, Frontal Lobe, Noise, Parietal Lobe, Scalp, Child, Language Development, Psycholinguistics, Brain, Perception, Speech, Vocalization, Animal, Discrimination (Psychology), Hippocampus, Rats, Calcium, Chelating Agents, Excitatory Postsynaptic Potentials, Glutamic Acid, Guanosine Diphosphate, In Vitro, Neuronal Plasticity, Pyramidal Cells, Receptors, AMPA, Metabotropic Glutamate, N-Methyl-D-Aspartate, Somatosensory Cortex, Synapses, Synaptic Transmission, Thionucleotides, Action Potentials, Calcium Channels, L-Type, Electric Conductivity, Entorhinal Cortex, Neurological, Long-Evans, Infant, Mathematics, Statistics, Probability Learning, Problem Solving, Psychophysics, Association Learning, Child Psychology, Habituation (Psychophysiology), Probability Theory, Analysis of Variance, Semantics, Symbolism, Behavior, Eye Movements, Macaca mulatta, Prefrontal Cortex, Cats, Dogs, Haplorhini, Photic Stimulation, Electroencephalography, Nervous System Physiology, Darkness, Grasshoppers, Light, Membrane Potentials, Neural Inhibition, Afferent, Picrotoxin, Vision, Deoxyglucose, Injections, Microspheres, Neural Pathways, Rhodamines, Choice Behavior, Speech Perception, Verbal Learning, Dominance, Cerebral, Fixation, Ocular, Language Tests, Random Allocation, Comparative Study, Saguinus, Sound Spectrography, Species Specificity, Audiometry, Auditory Threshold, Calibration, Data Interpretation, Statistical, Anesthesia, General, Electrodes, Implanted, Pitch Perception, Sound Localization, Paired-Associate Learning, Serial Learning, Auditory, Age Factors, Motion Perception, Brain Injuries, Computer Simulation, Blindness, Psychomotor Performance, Color Perception, Signal Detection (Psychology), Judgment, ROC Curve, Regression Analysis, Music, Probability, Arm, Cerebrovascular Disorders, Hemiplegia, Movement, Muscle, Skeletal, Myoclonus, Robotics, Magnetoencephalography, Phonetics, Software, Speech Production Measurement, Epilepsies, Partial, Laterality, Stereotaxic Techniques, Germany, Speech Acoustics, Verbal Behavior, Child Development, Instinct, Brain Stem, Coma, Diagnosis, Differential, Hearing Disorders, Hearing Loss, Central, Neuroma, Acoustic, Dendrites, Down-Regulation, Patch-Clamp Techniques, Wistar, Up-Regulation, Aged, Aphasia, Middle Aged, Cones (Retina), Primates, Retina, Retinal Ganglion Cells, 2626824},
}
Downloads: 0
{"_id":"6vWQWMdaYSd7S4vMB","bibbaseid":"mclean-palmer-contributionoflinearspatiotemporalreceptivefieldstructuretovelocityselectivityofsimplecellsinarea17ofcat-1989","downloads":0,"creationDate":"2015-02-08T05:14:51.241Z","title":"Contribution of linear spatiotemporal receptive field structure to velocity selectivity of simple cells in area 17 of cat.","author_short":["McLean, J","Palmer, L."],"year":1989,"bibtype":"article","biburl":"https://endress.org/publications/ansgar.bib","bibdata":{"bibtype":"article","type":"article","author":[{"firstnames":["J"],"propositions":[],"lastnames":["McLean"],"suffixes":[]},{"firstnames":["LA"],"propositions":[],"lastnames":["Palmer"],"suffixes":[]}],"journal":"Vision Res","title":"Contribution of linear spatiotemporal receptive field structure to velocity selectivity of simple cells in area 17 of cat.","year":"1989","number":"6","pages":"675-9","volume":"29","abstract":"We have examined the spatiotemporal structure of simple receptive fields in the cat's striate cortex by cross-correlating their spike trains with an ensemble of stimuli consisting of stationary bright and dark spots whose position was randomized on each 50 msec frame. Receptive fields were found to be either separable or inseparable in space-time and responses to moving stimuli were predicted from the spatiotemporal structure of the cell under study. Most simple cells with separable spatiotemporal receptive fields were not direction selective. All simple cells with inseparable spatiotemporal receptive fields were found to prefer movement in one direction. The optimal speed and direction were estimable from the slope of individual subregions observed in the space-time plane. The results are consistent with a linear model for direction selectivity.","keywords":"Computing Methodologies, Human, Language, Learning, Mental Processes, Models, Theoretical, Stochastic Processes, Support, U.S. Gov't, Non-P.H.S., Cognition, Linguistics, Neural Networks (Computer), Practice (Psychology), Non-U.S. Gov't, Memory, Psychological, Task Performance and Analysis, Time Factors, Visual Perception, Adult, Attention, Discrimination Learning, Female, Male, Short-Term, Mental Recall, Orientation, Pattern Recognition, Visual, Perceptual Masking, Reading, Concept Formation, Form Perception, Animals, Corpus Striatum, Shrews, P.H.S., Visual Cortex, Visual Pathways, Acoustic Stimulation, Auditory Cortex, Auditory Perception, Cochlea, Ear, Gerbillinae, Glycine, Hearing, Neurons, Space Perception, Strychnine, Adolescent, Decision Making, Reaction Time, Astrocytoma, Brain Mapping, Brain Neoplasms, Cerebral Cortex, Electric Stimulation, Electrophysiology, Epilepsy, Temporal Lobe, Evoked Potentials, Frontal Lobe, Noise, Parietal Lobe, Scalp, Child, Language Development, Psycholinguistics, Brain, Perception, Speech, Vocalization, Animal, Discrimination (Psychology), Hippocampus, Rats, Calcium, Chelating Agents, Excitatory Postsynaptic Potentials, Glutamic Acid, Guanosine Diphosphate, In Vitro, Neuronal Plasticity, Pyramidal Cells, Receptors, AMPA, Metabotropic Glutamate, N-Methyl-D-Aspartate, Somatosensory Cortex, Synapses, Synaptic Transmission, Thionucleotides, Action Potentials, Calcium Channels, L-Type, Electric Conductivity, Entorhinal Cortex, Neurological, Long-Evans, Infant, Mathematics, Statistics, Probability Learning, Problem Solving, Psychophysics, Association Learning, Child Psychology, Habituation (Psychophysiology), Probability Theory, Analysis of Variance, Semantics, Symbolism, Behavior, Eye Movements, Macaca mulatta, Prefrontal Cortex, Cats, Dogs, Haplorhini, Photic Stimulation, Electroencephalography, Nervous System Physiology, Darkness, Grasshoppers, Light, Membrane Potentials, Neural Inhibition, Afferent, Picrotoxin, Vision, Deoxyglucose, Injections, Microspheres, Neural Pathways, Rhodamines, Choice Behavior, Speech Perception, Verbal Learning, Dominance, Cerebral, Fixation, Ocular, Language Tests, Random Allocation, Comparative Study, Saguinus, Sound Spectrography, Species Specificity, Audiometry, Auditory Threshold, Calibration, Data Interpretation, Statistical, Anesthesia, General, Electrodes, Implanted, Pitch Perception, Sound Localization, Paired-Associate Learning, Serial Learning, Auditory, Age Factors, Motion Perception, Brain Injuries, Computer Simulation, Blindness, Psychomotor Performance, Color Perception, Signal Detection (Psychology), Judgment, ROC Curve, Regression Analysis, Music, Probability, Arm, Cerebrovascular Disorders, Hemiplegia, Movement, Muscle, Skeletal, Myoclonus, Robotics, Magnetoencephalography, Phonetics, Software, Speech Production Measurement, Epilepsies, Partial, Laterality, Stereotaxic Techniques, Germany, Speech Acoustics, Verbal Behavior, Child Development, Instinct, Brain Stem, Coma, Diagnosis, Differential, Hearing Disorders, Hearing Loss, Central, Neuroma, Acoustic, Dendrites, Down-Regulation, Patch-Clamp Techniques, Wistar, Up-Regulation, Aged, Aphasia, Middle Aged, Cones (Retina), Primates, Retina, Retinal Ganglion Cells, 2626824","bibtex":"@Article{McLean1989,\n author = {J McLean and LA Palmer},\n journal = {Vision Res},\n title = {Contribution of linear spatiotemporal receptive field structure to velocity selectivity of simple cells in area 17 of cat.},\n year = {1989},\n number = {6},\n pages = {675-9},\n volume = {29},\n abstract = {We have examined the spatiotemporal structure of simple receptive\n\tfields in the cat's striate cortex by cross-correlating their spike\n\ttrains with an ensemble of stimuli consisting of stationary bright\n\tand dark spots whose position was randomized on each 50 msec frame.\n\tReceptive fields were found to be either separable or inseparable\n\tin space-time and responses to moving stimuli were predicted from\n\tthe spatiotemporal structure of the cell under study. Most simple\n\tcells with separable spatiotemporal receptive fields were not direction\n\tselective. All simple cells with inseparable spatiotemporal receptive\n\tfields were found to prefer movement in one direction. The optimal\n\tspeed and direction were estimable from the slope of individual subregions\n\tobserved in the space-time plane. The results are consistent with\n\ta linear model for direction selectivity.},\n keywords = {Computing Methodologies, Human, Language, Learning, Mental Processes, Models, Theoretical, Stochastic Processes, Support, U.S. Gov't, Non-P.H.S., Cognition, Linguistics, Neural Networks (Computer), Practice (Psychology), Non-U.S. Gov't, Memory, Psychological, Task Performance and Analysis, Time Factors, Visual Perception, Adult, Attention, Discrimination Learning, Female, Male, Short-Term, Mental Recall, Orientation, Pattern Recognition, Visual, Perceptual Masking, Reading, Concept Formation, Form Perception, Animals, Corpus Striatum, Shrews, P.H.S., Visual Cortex, Visual Pathways, Acoustic Stimulation, Auditory Cortex, Auditory Perception, Cochlea, Ear, Gerbillinae, Glycine, Hearing, Neurons, Space Perception, Strychnine, Adolescent, Decision Making, Reaction Time, Astrocytoma, Brain Mapping, Brain Neoplasms, Cerebral Cortex, Electric Stimulation, Electrophysiology, Epilepsy, Temporal Lobe, Evoked Potentials, Frontal Lobe, Noise, Parietal Lobe, Scalp, Child, Language Development, Psycholinguistics, Brain, Perception, Speech, Vocalization, Animal, Discrimination (Psychology), Hippocampus, Rats, Calcium, Chelating Agents, Excitatory Postsynaptic Potentials, Glutamic Acid, Guanosine Diphosphate, In Vitro, Neuronal Plasticity, Pyramidal Cells, Receptors, AMPA, Metabotropic Glutamate, N-Methyl-D-Aspartate, Somatosensory Cortex, Synapses, Synaptic Transmission, Thionucleotides, Action Potentials, Calcium Channels, L-Type, Electric Conductivity, Entorhinal Cortex, Neurological, Long-Evans, Infant, Mathematics, Statistics, Probability Learning, Problem Solving, Psychophysics, Association Learning, Child Psychology, Habituation (Psychophysiology), Probability Theory, Analysis of Variance, Semantics, Symbolism, Behavior, Eye Movements, Macaca mulatta, Prefrontal Cortex, Cats, Dogs, Haplorhini, Photic Stimulation, Electroencephalography, Nervous System Physiology, Darkness, Grasshoppers, Light, Membrane Potentials, Neural Inhibition, Afferent, Picrotoxin, Vision, Deoxyglucose, Injections, Microspheres, Neural Pathways, Rhodamines, Choice Behavior, Speech Perception, Verbal Learning, Dominance, Cerebral, Fixation, Ocular, Language Tests, Random Allocation, Comparative Study, Saguinus, Sound Spectrography, Species Specificity, Audiometry, Auditory Threshold, Calibration, Data Interpretation, Statistical, Anesthesia, General, Electrodes, Implanted, Pitch Perception, Sound Localization, Paired-Associate Learning, Serial Learning, Auditory, Age Factors, Motion Perception, Brain Injuries, Computer Simulation, Blindness, Psychomotor Performance, Color Perception, Signal Detection (Psychology), Judgment, ROC Curve, Regression Analysis, Music, Probability, Arm, Cerebrovascular Disorders, Hemiplegia, Movement, Muscle, Skeletal, Myoclonus, Robotics, Magnetoencephalography, Phonetics, Software, Speech Production Measurement, Epilepsies, Partial, Laterality, Stereotaxic Techniques, Germany, Speech Acoustics, Verbal Behavior, Child Development, Instinct, Brain Stem, Coma, Diagnosis, Differential, Hearing Disorders, Hearing Loss, Central, Neuroma, Acoustic, Dendrites, Down-Regulation, Patch-Clamp Techniques, Wistar, Up-Regulation, Aged, Aphasia, Middle Aged, Cones (Retina), Primates, Retina, Retinal Ganglion Cells, 2626824},\n}\n\n","author_short":["McLean, J","Palmer, L."],"key":"McLean1989","id":"McLean1989","bibbaseid":"mclean-palmer-contributionoflinearspatiotemporalreceptivefieldstructuretovelocityselectivityofsimplecellsinarea17ofcat-1989","role":"author","urls":{},"keyword":["Computing Methodologies","Human","Language","Learning","Mental Processes","Models","Theoretical","Stochastic Processes","Support","U.S. Gov't","Non-P.H.S.","Cognition","Linguistics","Neural Networks (Computer)","Practice (Psychology)","Non-U.S. Gov't","Memory","Psychological","Task Performance and Analysis","Time Factors","Visual Perception","Adult","Attention","Discrimination Learning","Female","Male","Short-Term","Mental Recall","Orientation","Pattern Recognition","Visual","Perceptual Masking","Reading","Concept Formation","Form Perception","Animals","Corpus Striatum","Shrews","P.H.S.","Visual Cortex","Visual Pathways","Acoustic Stimulation","Auditory Cortex","Auditory Perception","Cochlea","Ear","Gerbillinae","Glycine","Hearing","Neurons","Space Perception","Strychnine","Adolescent","Decision Making","Reaction Time","Astrocytoma","Brain Mapping","Brain Neoplasms","Cerebral Cortex","Electric Stimulation","Electrophysiology","Epilepsy","Temporal Lobe","Evoked Potentials","Frontal Lobe","Noise","Parietal Lobe","Scalp","Child","Language Development","Psycholinguistics","Brain","Perception","Speech","Vocalization","Animal","Discrimination (Psychology)","Hippocampus","Rats","Calcium","Chelating Agents","Excitatory Postsynaptic Potentials","Glutamic Acid","Guanosine Diphosphate","In Vitro","Neuronal Plasticity","Pyramidal Cells","Receptors","AMPA","Metabotropic Glutamate","N-Methyl-D-Aspartate","Somatosensory Cortex","Synapses","Synaptic Transmission","Thionucleotides","Action Potentials","Calcium Channels","L-Type","Electric Conductivity","Entorhinal Cortex","Neurological","Long-Evans","Infant","Mathematics","Statistics","Probability Learning","Problem Solving","Psychophysics","Association Learning","Child Psychology","Habituation (Psychophysiology)","Probability Theory","Analysis of Variance","Semantics","Symbolism","Behavior","Eye Movements","Macaca mulatta","Prefrontal Cortex","Cats","Dogs","Haplorhini","Photic Stimulation","Electroencephalography","Nervous System Physiology","Darkness","Grasshoppers","Light","Membrane Potentials","Neural Inhibition","Afferent","Picrotoxin","Vision","Deoxyglucose","Injections","Microspheres","Neural Pathways","Rhodamines","Choice Behavior","Speech Perception","Verbal Learning","Dominance","Cerebral","Fixation","Ocular","Language Tests","Random Allocation","Comparative Study","Saguinus","Sound Spectrography","Species Specificity","Audiometry","Auditory Threshold","Calibration","Data Interpretation","Statistical","Anesthesia","General","Electrodes","Implanted","Pitch Perception","Sound Localization","Paired-Associate Learning","Serial Learning","Auditory","Age Factors","Motion Perception","Brain Injuries","Computer Simulation","Blindness","Psychomotor Performance","Color Perception","Signal Detection (Psychology)","Judgment","ROC Curve","Regression Analysis","Music","Probability","Arm","Cerebrovascular Disorders","Hemiplegia","Movement","Muscle","Skeletal","Myoclonus","Robotics","Magnetoencephalography","Phonetics","Software","Speech Production Measurement","Epilepsies","Partial","Laterality","Stereotaxic Techniques","Germany","Speech Acoustics","Verbal Behavior","Child Development","Instinct","Brain Stem","Coma","Diagnosis","Differential","Hearing Disorders","Hearing Loss","Central","Neuroma","Acoustic","Dendrites","Down-Regulation","Patch-Clamp Techniques","Wistar","Up-Regulation","Aged","Aphasia","Middle Aged","Cones (Retina)","Primates","Retina","Retinal Ganglion Cells","2626824"],"metadata":{"authorlinks":{}},"downloads":0},"search_terms":["contribution","linear","spatiotemporal","receptive","field","structure","velocity","selectivity","simple","cells","area","cat","mclean","palmer"],"keywords":["computing methodologies","human","language","learning","mental processes","models","theoretical","stochastic processes","support","u.s. gov't","non-p.h.s.","cognition","linguistics","neural networks (computer)","practice (psychology)","non-u.s. gov't","memory","psychological","task performance and analysis","time factors","visual perception","adult","attention","discrimination learning","female","male","short-term","mental recall","orientation","pattern recognition","visual","perceptual masking","reading","concept formation","form perception","animals","corpus striatum","shrews","p.h.s.","visual cortex","visual pathways","acoustic stimulation","auditory cortex","auditory perception","cochlea","ear","gerbillinae","glycine","hearing","neurons","space perception","strychnine","adolescent","decision making","reaction time","astrocytoma","brain mapping","brain neoplasms","cerebral cortex","electric stimulation","electrophysiology","epilepsy","temporal lobe","evoked potentials","frontal lobe","noise","parietal lobe","scalp","child","language development","psycholinguistics","brain","perception","speech","vocalization","animal","discrimination (psychology)","hippocampus","rats","calcium","chelating agents","excitatory postsynaptic potentials","glutamic acid","guanosine diphosphate","in vitro","neuronal plasticity","pyramidal cells","receptors","ampa","metabotropic glutamate","n-methyl-d-aspartate","somatosensory cortex","synapses","synaptic transmission","thionucleotides","action potentials","calcium channels","l-type","electric conductivity","entorhinal cortex","neurological","long-evans","infant","mathematics","statistics","probability learning","problem solving","psychophysics","association learning","child psychology","habituation (psychophysiology)","probability theory","analysis of variance","semantics","symbolism","behavior","eye movements","macaca mulatta","prefrontal cortex","cats","dogs","haplorhini","photic stimulation","electroencephalography","nervous system physiology","darkness","grasshoppers","light","membrane potentials","neural inhibition","afferent","picrotoxin","vision","deoxyglucose","injections","microspheres","neural pathways","rhodamines","choice behavior","speech perception","verbal learning","dominance","cerebral","fixation","ocular","language tests","random allocation","comparative study","saguinus","sound spectrography","species specificity","audiometry","auditory threshold","calibration","data interpretation","statistical","anesthesia","general","electrodes","implanted","pitch perception","sound localization","paired-associate learning","serial learning","auditory","age factors","motion perception","brain injuries","computer simulation","blindness","psychomotor performance","color perception","signal detection (psychology)","judgment","roc curve","regression analysis","music","probability","arm","cerebrovascular disorders","hemiplegia","movement","muscle","skeletal","myoclonus","robotics","magnetoencephalography","phonetics","software","speech production measurement","epilepsies","partial","laterality","stereotaxic techniques","germany","speech acoustics","verbal behavior","child development","instinct","brain stem","coma","diagnosis","differential","hearing disorders","hearing loss","central","neuroma","acoustic","dendrites","down-regulation","patch-clamp techniques","wistar","up-regulation","aged","aphasia","middle aged","cones (retina)","primates","retina","retinal ganglion cells","2626824"],"authorIDs":[],"dataSources":["ErLXoH8mqSjESnrN5","xPGxHAeh3vZpx4yyE","TXa55dQbNoWnaGmMq"]}