In-vivo identification and control of aerotaxis in Bacillus subtilis. Menolascina, F., Stocker, R., & Sontag, E. In Proc. IEEE Conf. Decision and Control, Dec. 2016, pages 764-769, 2016. abstract bibtex Combining in-vivo experiments with system identification methods, we determine a simple model of aerotaxis in B. subtilis, and we subsequently employ this model in order to compute the sequence of oxygen gradients needed in order to achieve set-point regulation with respect to a signal tracking the center of mass of the bacterial population. We then successfully validate both the model and the control scheme, by showing that in-vivo positioning control can be achieved via the application of the precomputed inputs in-vivo in an open-loop configuration.
@INPROCEEDINGS{16cdc_menolascina,
AUTHOR = {F. Menolascina and R. Stocker and E.D. Sontag},
BOOKTITLE = {Proc. IEEE Conf. Decision and Control, Dec. 2016},
TITLE = {In-vivo identification and control of aerotaxis in
Bacillus subtilis},
YEAR = {2016},
OPTADDRESS = {},
OPTCROSSREF = {},
OPTEDITOR = {},
OPTMONTH = {},
OPTNOTE = {},
OPTNUMBER = {},
OPTORGANIZATION = {},
PAGES = {764-769},
OPTPUBLISHER = {},
OPTSERIES = {},
OPTVOLUME = {},
KEYWORDS = {identification, systems biology, aerotaxis, B. subtilis},
PDF = {../../FTPDIR/2016cdc_menolascina_stocker_sontag_as_published.pdf},
ABSTRACT = {Combining in-vivo experiments with system identification
methods, we determine a simple model of aerotaxis in B. subtilis, and
we subsequently employ this model in order to compute the sequence of
oxygen gradients needed in order to achieve set-point regulation with
respect to a signal tracking the center of mass of the bacterial
population. We then successfully validate both the model and the
control scheme, by showing that in-vivo positioning control can be
achieved via the application of the precomputed inputs in-vivo in an
open-loop configuration.}
}