Detection of an EPR Multiline Signal for the S0* State in Photosystem II. Messinger, J., Nugent, J. H. A., & Evans, M. C. W. Biochemistry, 36(37):11055–11060, September, 1997. Publisher: American Chemical Society
Detection of an EPR Multiline Signal for the S0* State in Photosystem II [link]Paper  doi  abstract   bibtex   
The S0* state was generated by incubation of dark-adapted (S1 state) photosystem II membranes either with the exogenous two electron reductant hydrazine and subsequent 273 K illumination in the presence of DCMU or by dark incubation with low amounts of the one electron reductant hydroxylamine. In agreement with earlier reports, the S1 and S-1 states were found to be electron paramagnetic resonance (EPR) silent. However, in the presence of 0.5−1.5% methanol, a weak EPR multiline signal centered around g = 2.0 was observed at 7 K for the S0* states generated by both procedures. This signal has a similar average line splitting to the well-characterized S2 state multiline EPR signal, but can be clearly distinguished from that and other modified S2 multiline signals by differences in line position and intensities. In addition, at 4 K it can be seen that the S0* multiline has a greater spectral breadth than the S2 multilines and is composed of up to 26 peaks. The S0* signal is not seen in the absence of methanol and is not affected by 1 mM EDTA in the buffer medium. We assign the S0* multiline signal to the manganese cluster of the oxygen evolving complex in a mixed valence state of the form MnIIMnIIIMnIIIMnIII, MnIIMnIIIMnIVMnIV, or MnIIIMnIIIMnIIIMnIV. Addition of methanol may be helpful in future to find an EPR signal originating from the natural S0 state.
@article{messinger_detection_1997,
	title = {Detection of an {EPR} {Multiline} {Signal} for the {S0}* {State} in {Photosystem} {II}},
	volume = {36},
	issn = {0006-2960},
	url = {https://doi.org/10.1021/bi9711285},
	doi = {10.1021/bi9711285},
	abstract = {The S0* state was generated by incubation of dark-adapted (S1 state) photosystem II membranes either with the exogenous two electron reductant hydrazine and subsequent 273 K illumination in the presence of DCMU or by dark incubation with low amounts of the one electron reductant hydroxylamine. In agreement with earlier reports, the S1 and S-1 states were found to be electron paramagnetic resonance (EPR) silent. However, in the presence of 0.5−1.5\% methanol, a weak EPR multiline signal centered around g = 2.0 was observed at 7 K for the S0* states generated by both procedures. This signal has a similar average line splitting to the well-characterized S2 state multiline EPR signal, but can be clearly distinguished from that and other modified S2 multiline signals by differences in line position and intensities. In addition, at 4 K it can be seen that the S0* multiline has a greater spectral breadth than the S2 multilines and is composed of up to 26 peaks. The S0* signal is not seen in the absence of methanol and is not affected by 1 mM EDTA in the buffer medium. We assign the S0* multiline signal to the manganese cluster of the oxygen evolving complex in a mixed valence state of the form MnIIMnIIIMnIIIMnIII, MnIIMnIIIMnIVMnIV, or MnIIIMnIIIMnIIIMnIV. Addition of methanol may be helpful in future to find an EPR signal originating from the natural S0 state.},
	number = {37},
	urldate = {2024-11-28},
	journal = {Biochemistry},
	author = {Messinger, Johannes and Nugent, Jonathan H. A. and Evans, Michael C. W.},
	month = sep,
	year = {1997},
	note = {Publisher: American Chemical Society},
	pages = {11055--11060},
}

Downloads: 0