RePOR: Mimiking humans on refactoring tasks. Are we there yet?. Morales, R.; Khomh, F.; and Antoniol, G. Empirical Software Engineering, 25(4):2960-2996, 2020.
RePOR: Mimiking humans on refactoring tasks. Are we there yet? [pdf]Paper  RePOR: Mimiking humans on refactoring tasks. Are we there yet? [link]Paper  doi  abstract   bibtex   5 downloads  
Refactoring is a maintenance activity that aims to improve design quality while preserving the behavior of a system. Several (semi)automated approaches have been proposed to support developers in this maintenance activity, based on the correction of anti-patterns, which are “poor” solutions to recurring design problems. However, little quantitative evidence exists about the impact of automatically refactored code on program comprehension, and in which context automated refactoring can be as effective as manual refactoring. Leveraging RePOR, an automated refactoring approach based on partial order reduction techniques, we performed an empirical study to investigate whether automated refactoring code structure affects the understandability of systems during comprehension tasks. (1) We surveyed 80 developers, asking them to identify from a set of 20 refactoring changes if they were generated by developers or by a tool, and to rate the refactoring changes according to their design quality; (2) we asked 30 developers to complete code comprehension tasks on 10 systems that were refactored by either a freelancer or an automated refactoring tool. To make comparison fair, for a subset of refactoring actions that introduce new code entities, only synthetic identifiers were presented to practitioners. We measured developers’ performance using the NASA task load index for their effort, the time that they spent performing the tasks, and their percentages of correct answers. Our findings, despite current technology limitations, show that it is reasonable to expect refactoring tools to match developer code. Indeed, results show that for 3 out of the 5 anti-pattern types studied, developers could not recognize the origin of the refactoring (i.e., whether it was performed by a human or an automatic tool). We also observed that developers do not prefer human refactorings over automated refactorings, except when refactoring Blob classes; and that there is no statistically significant difference between the impact on code understandability of human refactorings and automated refactorings. We conclude that automated refactorings can be as effective as manual refactorings. However, for complex anti-patterns types like the Blob, the perceived quality achieved by developers is slightly higher
@Article{emse2020refturing,
author="R. Morales and F. Khomh and G. Antoniol",
title="RePOR: Mimiking humans on refactoring tasks. Are we there yet?",
journal="Empirical Software Engineering",
year={2020},
volume={25}, 
number={4}, 
pages={2960-2996}, 
abstract="Refactoring is a maintenance activity that aims to improve design quality while preserving the behavior of a system. Several (semi)automated approaches have been proposed to support developers in this maintenance activity, based on the correction of anti-patterns, which are “poor” solutions to recurring design problems. However, little quantitative evidence exists about the impact of automatically refactored code on program comprehension, and in which context automated refactoring can be as effective as manual refactoring. Leveraging RePOR, an automated refactoring approach based on partial order reduction techniques, we performed an empirical study to investigate whether automated refactoring code structure affects the understandability of systems during comprehension tasks. (1) We surveyed 80 developers, asking them to identify from a set of 20 refactoring changes if they were generated by developers or by a tool, and to rate the refactoring changes according to their design quality; (2) we asked 30 developers to complete code comprehension tasks on 10 systems that were refactored by either a freelancer or an automated refactoring tool. To make comparison fair, for a subset of refactoring actions that introduce new code entities, only synthetic identifiers were presented to practitioners. We measured developers’ performance using the NASA task load index for their effort, the time that they spent performing the tasks, and their percentages of correct answers. Our findings, despite current technology limitations, show that it is reasonable to expect refactoring tools to match developer code. Indeed, results show that for 3 out of the 5 anti-pattern types studied, developers could not recognize the origin of the refactoring (i.e., whether it was performed by a human or an automatic tool). We also observed that developers do not prefer human refactorings over automated refactorings, except when refactoring Blob classes; and that there is no statistically significant difference between the impact on code understandability of human refactorings and automated refactorings. We conclude that automated refactorings can be as effective as manual refactorings. However, for complex anti-patterns types like the Blob, the perceived quality achieved by developers is slightly higher",
issn={1573-7616},
doi={10.1007/s10664-020-09826-7},
url_Paper = {https://moar82.github.io/preprint/refturing-EMSE-D-19-00094R1.pdf},
url={-},}
Downloads: 5