Local auxin competition explains fragmented differentiation patterns. Moret, B., Marhava, P., Aliaga Fandino, A. C., Hardtke, C. S., & ten Tusscher, K. H. W. Nature Communications, 11(1):2965, June, 2020. Number: 1 Publisher: Nature Publishing Group
Local auxin competition explains fragmented differentiation patterns [link]Paper  doi  abstract   bibtex   
Trajectories of cellular ontogeny are tightly controlled and often involve feedback-regulated molecular antagonism. For example, sieve element differentiation along developing protophloem cell files of Arabidopsis roots requires two antagonistic regulators of auxin efflux. Paradoxically, loss-of-function in either regulator triggers similar, seemingly stochastic differentiation failures of individual sieve element precursors. Here we show that these patterning defects are distinct and non-random. They can be explained by auxin-dependent bistability that emerges from competition for auxin between neighboring cells. This bistability depends on the presence of an auxin influx facilitator, and can be triggered by either flux enhancement or repression. Our results uncover a hitherto overlooked aspect of auxin uptake, and highlight the contributions of local auxin influx, efflux and biosynthesis to protophloem formation. Moreover, the combined experimental-modeling approach suggests that without auxin efflux homeostasis, auxin influx interferes with coordinated differentiation.
@article{moret_local_2020,
	title = {Local auxin competition explains fragmented differentiation patterns},
	volume = {11},
	copyright = {2020 The Author(s)},
	issn = {2041-1723},
	url = {https://www.nature.com/articles/s41467-020-16803-7},
	doi = {10.1038/s41467-020-16803-7},
	abstract = {Trajectories of cellular ontogeny are tightly controlled and often involve feedback-regulated molecular antagonism. For example, sieve element differentiation along developing protophloem cell files of Arabidopsis roots requires two antagonistic regulators of auxin efflux. Paradoxically, loss-of-function in either regulator triggers similar, seemingly stochastic differentiation failures of individual sieve element precursors. Here we show that these patterning defects are distinct and non-random. They can be explained by auxin-dependent bistability that emerges from competition for auxin between neighboring cells. This bistability depends on the presence of an auxin influx facilitator, and can be triggered by either flux enhancement or repression. Our results uncover a hitherto overlooked aspect of auxin uptake, and highlight the contributions of local auxin influx, efflux and biosynthesis to protophloem formation. Moreover, the combined experimental-modeling approach suggests that without auxin efflux homeostasis, auxin influx interferes with coordinated differentiation.},
	language = {en},
	number = {1},
	urldate = {2022-05-02},
	journal = {Nature Communications},
	author = {Moret, Bernard and Marhava, Petra and Aliaga Fandino, Ana Cecilia and Hardtke, Christian S. and ten Tusscher, Kirsten H. W.},
	month = jun,
	year = {2020},
	note = {Number: 1
Publisher: Nature Publishing Group},
	keywords = {Auxin, Patterning},
	pages = {2965},
}

Downloads: 0