Deep learning and Bayesian inference of gravitational-wave populations: Hierarchical black-hole mergers. Mould, M., Gerosa, D., & Taylor, S. R. Physical Review D, 106(10):103013, November, 2022.
doi  bibtex   
@article{2022PhRvD.106j3013M,
	adsnote = {Provided by the SAO/NASA Astrophysics Data System},
	adsurl = {https://ui.adsabs.harvard.edu/abs/2022PhRvD.106j3013M},
	archiveprefix = {arXiv},
	author = {{Mould}, Matthew and {Gerosa}, Davide and {Taylor}, Stephen R.},
	doi = {10.1103/PhysRevD.106.103013},
	eid = {103013},
	eprint = {2203.03651},
	journal = {Physical Review D},
	keywords = {Astrophysics - High Energy Astrophysical Phenomena, Astrophysics - Instrumentation and Methods for Astrophysics, General Relativity and Quantum Cosmology},
	month = nov,
	number = {10},
	pages = {103013},
	primaryclass = {astro-ph.HE},
	title = {{Deep learning and Bayesian inference of gravitational-wave populations: Hierarchical black-hole mergers}},
	volume = {106},
	year = 2022,
	bdsk-url-1 = {https://doi.org/10.1103/PhysRevD.106.103013}}

Downloads: 0