DNA-Controlled Encapsulation of Small Molecules in Protein Nanoparticles. Ngo, W., Stordy, B., Lazarovits, J., Raja, E. K., Etienne, C. L., & Chan, W. C. W. J. Am. Chem. Soc., 142(42):17938–17943, October, 2020. Publisher: American Chemical Society
DNA-Controlled Encapsulation of Small Molecules in Protein Nanoparticles [link]Paper  DNA-Controlled Encapsulation of Small Molecules in Protein Nanoparticles [pdf]Paper  doi  abstract   bibtex   9 downloads  
A nanoparticle can hold multiple types of therapeutic and imaging agents for disease treatment and diagnosis. However, controlling the storage of molecules in nanoparticles is challenging, because nonspecific intermolecular interactions are used for encapsulation. Here, we used specific DNA interactions to store molecules in nanoparticles. We made nanoparticles containing DNA anchors to capture DNA-conjugated small molecules. By changing the sequences and stoichiometry of DNA anchors, we can control the amount and ratio of molecules with different chemical properties in the nanoparticles. We modified the cytotoxicity of our nanoparticles to cancer cells by changing the ratio of encapsulated drugs (mertansine and doxorubicin). Specifically controlling the storage of multiple types of molecules allows us to optimize the properties of combination drug and imaging nanoparticles.

Downloads: 9