Impacts of global climate change mitigation scenarios on forests and harvesting in Sweden. Nordström, E., Forsell, N., Lundström, A., Korosuo, A., Bergh, J., Havlík, P., Kraxner, F., Frank, S., Fricko, O., Lundmark, T., & Nordin, A. Canadian Journal of Forest Research, 46(12):1427–1438, December, 2016.
Impacts of global climate change mitigation scenarios on forests and harvesting in Sweden [link]Paper  doi  abstract   bibtex   
Under climate change, the importance of biomass resources is likely to increase and new approaches are needed to analyze future material and energy use of biomass globally and locally. Using Sweden as an example, we present an approach that combines global and national land-use and forest models to analyze impacts of climate change mitigation ambitions on forest management and harvesting in a specific country. National forest impact analyses in Sweden have traditionally focused on supply potential with little reference to international market developments. In this study, we use the global greenhouse gas concentration scenarios from the Intergovernmental Panel for Climate Change to estimate global biomass demand and assess potential implications on harvesting and biodiversity in Sweden. The results show that the short-term demand for wood is close to the full harvesting potential in Sweden in all scenarios. Under high bioenergy demand, harvest levels are projected to stay high over a longer time and particularly impact the harvest levels of pulpwood. The area of old forest in the managed landscape may decrease. This study highlights the importance of global scenarios when discussing national-level analysis and pinpoints trade-offs that policy making in Sweden may need to tackle in the near future.
@article{nordstrom_impacts_2016,
	title = {Impacts of global climate change mitigation scenarios on forests and harvesting in {Sweden}},
	volume = {46},
	issn = {0045-5067, 1208-6037},
	url = {http://www.nrcresearchpress.com/doi/10.1139/cjfr-2016-0122},
	doi = {10.1139/cjfr-2016-0122},
	abstract = {Under climate change, the importance of biomass resources is likely to increase and new approaches are needed to analyze future material and energy use of biomass globally and locally. Using Sweden as an example, we present an approach that combines global and national land-use and forest models to analyze impacts of climate change mitigation ambitions on forest management and harvesting in a specific country. National forest impact analyses in Sweden have traditionally focused on supply potential with little reference to international market developments. In this study, we use the global greenhouse gas concentration scenarios from the Intergovernmental Panel for Climate Change to estimate global biomass demand and assess potential implications on harvesting and biodiversity in Sweden. The results show that the short-term demand for wood is close to the full harvesting potential in Sweden in all scenarios. Under high bioenergy demand, harvest levels are projected to stay high over a longer time and particularly impact the harvest levels of pulpwood. The area of old forest in the managed landscape may decrease. This study highlights the importance of global scenarios when discussing national-level analysis and pinpoints trade-offs that policy making in Sweden may need to tackle in the near future.},
	language = {en},
	number = {12},
	urldate = {2021-06-07},
	journal = {Canadian Journal of Forest Research},
	author = {Nordström, Eva-Maria and Forsell, Nicklas and Lundström, Anders and Korosuo, Anu and Bergh, Johan and Havlík, Petr and Kraxner, Florian and Frank, Stefan and Fricko, Oliver and Lundmark, Tomas and Nordin, Annika},
	month = dec,
	year = {2016},
	pages = {1427--1438},
}

Downloads: 0