``Primitive intelligence" in the auditory cortex. Näätänen, R, Tervaniemi, M, Sussman, E, Paavilainen, P, & Winkler, I Trends Neurosci, 24(5):283-8, 2001. abstract bibtex The everyday auditory environment consists of multiple simultaneously active sources with overlapping temporal and spectral acoustic properties. Despite the seemingly chaotic composite signal impinging on our ears, the resulting perception is of an orderly "auditory scene" that is organized according to sources and auditory events, allowing us to select messages easily, recognize familiar sound patterns, and distinguish deviant or novel ones. Recent data suggest that these perceptual achievements are mainly based on processes of a cognitive nature ("sensory intelligence") in the auditory cortex. Even higher cognitive processes than previously thought, such as those that organize the auditory input, extract the common invariant patterns shared by a number of acoustically varying sounds, or anticipate the auditory events of the immediate future, occur at the level of sensory cortex (even when attention is not directed towards the sensory input).
@Article{Naatanen-Review,
author = {N\"{a}\"{a}t\"{a}nen, R and Tervaniemi, M and Sussman, E and Paavilainen, P and Winkler, I},
journal = {Trends Neurosci},
title = {``{P}rimitive intelligence" in the auditory cortex.},
year = {2001},
number = {5},
pages = {283-8},
volume = {24},
abstract = {The everyday auditory environment consists of multiple simultaneously
active sources with overlapping temporal and spectral acoustic properties.
Despite the seemingly chaotic composite signal impinging on our ears,
the resulting perception is of an orderly "auditory scene" that is
organized according to sources and auditory events, allowing us to
select messages easily, recognize familiar sound patterns, and distinguish
deviant or novel ones. Recent data suggest that these perceptual
achievements are mainly based on processes of a cognitive nature
("sensory intelligence") in the auditory cortex. Even higher cognitive
processes than previously thought, such as those that organize the
auditory input, extract the common invariant patterns shared by a
number of acoustically varying sounds, or anticipate the auditory
events of the immediate future, occur at the level of sensory cortex
(even when attention is not directed towards the sensory input).},
keywords = {Computing Methodologies, Human, Language, Learning, Mental Processes, Models, Theoretical, Stochastic Processes, Support, U.S. Gov't, Non-P.H.S., Cognition, Linguistics, Neural Networks (Computer), Practice (Psychology), Non-U.S. Gov't, Memory, Psychological, Task Performance and Analysis, Time Factors, Visual Perception, Adult, Attention, Discrimination Learning, Female, Male, Short-Term, Mental Recall, Orientation, Pattern Recognition, Visual, Perceptual Masking, Reading, Concept Formation, Form Perception, Animals, Corpus Striatum, Shrews, P.H.S., Visual Cortex, Visual Pathways, Acoustic Stimulation, Auditory Cortex, Auditory Perception, Cochlea, Ear, Gerbillinae, Glycine, Hearing, Neurons, Space Perception, Strychnine, Adolescent, Decision Making, Reaction Time, Astrocytoma, Brain Mapping, Brain Neoplasms, Cerebral Cortex, Electric Stimulation, Electrophysiology, Epilepsy, Temporal Lobe, Evoked Potentials, Frontal Lobe, Noise, Parietal Lobe, Scalp, Child, Language Development, Psycholinguistics, Brain, Perception, Speech, Vocalization, Animal, Discrimination (Psychology), Hippocampus, Rats, Calcium, Chelating Agents, Excitatory Postsynaptic Potentials, Glutamic Acid, Guanosine Diphosphate, In Vitro, Neuronal Plasticity, Pyramidal Cells, Receptors, AMPA, Metabotropic Glutamate, N-Methyl-D-Aspartate, Somatosensory Cortex, Synapses, Synaptic Transmission, Thionucleotides, Action Potentials, Calcium Channels, L-Type, Electric Conductivity, Entorhinal Cortex, Neurological, Long-Evans, Infant, Mathematics, Statistics, Probability Learning, Problem Solving, Psychophysics, Association Learning, Child Psychology, Habituation (Psychophysiology), Probability Theory, Analysis of Variance, Semantics, Symbolism, Behavior, Eye Movements, Macaca mulatta, Prefrontal Cortex, Cats, Dogs, Haplorhini, Photic Stimulation, Electroencephalography, Nervous System Physiology, Darkness, Grasshoppers, Light, Membrane Potentials, Neural Inhibition, Afferent, Picrotoxin, Vision, Deoxyglucose, Injections, Microspheres, Neural Pathways, Rhodamines, Choice Behavior, Speech Perception, Verbal Learning, Dominance, Cerebral, Fixation, Ocular, Language Tests, Random Allocation, Comparative Study, Saguinus, Sound Spectrography, Species Specificity, Audiometry, Auditory Threshold, Calibration, Data Interpretation, Statistical, Anesthesia, General, Electrodes, Implanted, Pitch Perception, Sound Localization, Paired-Associate Learning, Serial Learning, Auditory, Age Factors, Motion Perception, Brain Injuries, Computer Simulation, Blindness, Psychomotor Performance, Color Perception, Signal Detection (Psychology), Judgment, ROC Curve, Regression Analysis, Music, Probability, Arm, Cerebrovascular Disorders, Hemiplegia, Movement, Muscle, Skeletal, Myoclonus, Robotics, Magnetoencephalography, Phonetics, Software, Speech Production Measurement, Epilepsies, Partial, Laterality, Stereotaxic Techniques, Germany, Speech Acoustics, Verbal Behavior, Child Development, Instinct, Brain Stem, Coma, Diagnosis, Differential, Hearing Disorders, Hearing Loss, Central, Neuroma, Acoustic, Dendrites, Down-Regulation, Patch-Clamp Techniques, Wistar, Up-Regulation, Aged, Aphasia, Middle Aged, Cones (Retina), Primates, Retina, Retinal Ganglion Cells, Tympanic Membrane, Cell Communication, Extremities, Biological, Motor Activity, Rana catesbeiana, Spinal Cord, Central Nervous System, Motion, Motor Cortex, Intelligence, 11311381},
}
Downloads: 0
{"_id":"FeXDz6bqaBickNueK","bibbaseid":"ntnen-tervaniemi-sussman-paavilainen-winkler-primitiveintelligenceintheauditorycortex-2001","author_short":["Näätänen, R","Tervaniemi, M","Sussman, E","Paavilainen, P","Winkler, I"],"bibdata":{"bibtype":"article","type":"article","author":[{"propositions":[],"lastnames":["Näätänen"],"firstnames":["R"],"suffixes":[]},{"propositions":[],"lastnames":["Tervaniemi"],"firstnames":["M"],"suffixes":[]},{"propositions":[],"lastnames":["Sussman"],"firstnames":["E"],"suffixes":[]},{"propositions":[],"lastnames":["Paavilainen"],"firstnames":["P"],"suffixes":[]},{"propositions":[],"lastnames":["Winkler"],"firstnames":["I"],"suffixes":[]}],"journal":"Trends Neurosci","title":"``Primitive intelligence\" in the auditory cortex.","year":"2001","number":"5","pages":"283-8","volume":"24","abstract":"The everyday auditory environment consists of multiple simultaneously active sources with overlapping temporal and spectral acoustic properties. Despite the seemingly chaotic composite signal impinging on our ears, the resulting perception is of an orderly \"auditory scene\" that is organized according to sources and auditory events, allowing us to select messages easily, recognize familiar sound patterns, and distinguish deviant or novel ones. Recent data suggest that these perceptual achievements are mainly based on processes of a cognitive nature (\"sensory intelligence\") in the auditory cortex. Even higher cognitive processes than previously thought, such as those that organize the auditory input, extract the common invariant patterns shared by a number of acoustically varying sounds, or anticipate the auditory events of the immediate future, occur at the level of sensory cortex (even when attention is not directed towards the sensory input).","keywords":"Computing Methodologies, Human, Language, Learning, Mental Processes, Models, Theoretical, Stochastic Processes, Support, U.S. Gov't, Non-P.H.S., Cognition, Linguistics, Neural Networks (Computer), Practice (Psychology), Non-U.S. Gov't, Memory, Psychological, Task Performance and Analysis, Time Factors, Visual Perception, Adult, Attention, Discrimination Learning, Female, Male, Short-Term, Mental Recall, Orientation, Pattern Recognition, Visual, Perceptual Masking, Reading, Concept Formation, Form Perception, Animals, Corpus Striatum, Shrews, P.H.S., Visual Cortex, Visual Pathways, Acoustic Stimulation, Auditory Cortex, Auditory Perception, Cochlea, Ear, Gerbillinae, Glycine, Hearing, Neurons, Space Perception, Strychnine, Adolescent, Decision Making, Reaction Time, Astrocytoma, Brain Mapping, Brain Neoplasms, Cerebral Cortex, Electric Stimulation, Electrophysiology, Epilepsy, Temporal Lobe, Evoked Potentials, Frontal Lobe, Noise, Parietal Lobe, Scalp, Child, Language Development, Psycholinguistics, Brain, Perception, Speech, Vocalization, Animal, Discrimination (Psychology), Hippocampus, Rats, Calcium, Chelating Agents, Excitatory Postsynaptic Potentials, Glutamic Acid, Guanosine Diphosphate, In Vitro, Neuronal Plasticity, Pyramidal Cells, Receptors, AMPA, Metabotropic Glutamate, N-Methyl-D-Aspartate, Somatosensory Cortex, Synapses, Synaptic Transmission, Thionucleotides, Action Potentials, Calcium Channels, L-Type, Electric Conductivity, Entorhinal Cortex, Neurological, Long-Evans, Infant, Mathematics, Statistics, Probability Learning, Problem Solving, Psychophysics, Association Learning, Child Psychology, Habituation (Psychophysiology), Probability Theory, Analysis of Variance, Semantics, Symbolism, Behavior, Eye Movements, Macaca mulatta, Prefrontal Cortex, Cats, Dogs, Haplorhini, Photic Stimulation, Electroencephalography, Nervous System Physiology, Darkness, Grasshoppers, Light, Membrane Potentials, Neural Inhibition, Afferent, Picrotoxin, Vision, Deoxyglucose, Injections, Microspheres, Neural Pathways, Rhodamines, Choice Behavior, Speech Perception, Verbal Learning, Dominance, Cerebral, Fixation, Ocular, Language Tests, Random Allocation, Comparative Study, Saguinus, Sound Spectrography, Species Specificity, Audiometry, Auditory Threshold, Calibration, Data Interpretation, Statistical, Anesthesia, General, Electrodes, Implanted, Pitch Perception, Sound Localization, Paired-Associate Learning, Serial Learning, Auditory, Age Factors, Motion Perception, Brain Injuries, Computer Simulation, Blindness, Psychomotor Performance, Color Perception, Signal Detection (Psychology), Judgment, ROC Curve, Regression Analysis, Music, Probability, Arm, Cerebrovascular Disorders, Hemiplegia, Movement, Muscle, Skeletal, Myoclonus, Robotics, Magnetoencephalography, Phonetics, Software, Speech Production Measurement, Epilepsies, Partial, Laterality, Stereotaxic Techniques, Germany, Speech Acoustics, Verbal Behavior, Child Development, Instinct, Brain Stem, Coma, Diagnosis, Differential, Hearing Disorders, Hearing Loss, Central, Neuroma, Acoustic, Dendrites, Down-Regulation, Patch-Clamp Techniques, Wistar, Up-Regulation, Aged, Aphasia, Middle Aged, Cones (Retina), Primates, Retina, Retinal Ganglion Cells, Tympanic Membrane, Cell Communication, Extremities, Biological, Motor Activity, Rana catesbeiana, Spinal Cord, Central Nervous System, Motion, Motor Cortex, Intelligence, 11311381","bibtex":"@Article{Naatanen-Review,\n author = {N\\\"{a}\\\"{a}t\\\"{a}nen, R and Tervaniemi, M and Sussman, E and Paavilainen, P and Winkler, I},\n journal = {Trends Neurosci},\n title = {``{P}rimitive intelligence\" in the auditory cortex.},\n year = {2001},\n number = {5},\n pages = {283-8},\n volume = {24},\n abstract = {The everyday auditory environment consists of multiple simultaneously\n\tactive sources with overlapping temporal and spectral acoustic properties.\n\tDespite the seemingly chaotic composite signal impinging on our ears,\n\tthe resulting perception is of an orderly \"auditory scene\" that is\n\torganized according to sources and auditory events, allowing us to\n\tselect messages easily, recognize familiar sound patterns, and distinguish\n\tdeviant or novel ones. Recent data suggest that these perceptual\n\tachievements are mainly based on processes of a cognitive nature\n\t(\"sensory intelligence\") in the auditory cortex. Even higher cognitive\n\tprocesses than previously thought, such as those that organize the\n\tauditory input, extract the common invariant patterns shared by a\n\tnumber of acoustically varying sounds, or anticipate the auditory\n\tevents of the immediate future, occur at the level of sensory cortex\n\t(even when attention is not directed towards the sensory input).},\n keywords = {Computing Methodologies, Human, Language, Learning, Mental Processes, Models, Theoretical, Stochastic Processes, Support, U.S. Gov't, Non-P.H.S., Cognition, Linguistics, Neural Networks (Computer), Practice (Psychology), Non-U.S. Gov't, Memory, Psychological, Task Performance and Analysis, Time Factors, Visual Perception, Adult, Attention, Discrimination Learning, Female, Male, Short-Term, Mental Recall, Orientation, Pattern Recognition, Visual, Perceptual Masking, Reading, Concept Formation, Form Perception, Animals, Corpus Striatum, Shrews, P.H.S., Visual Cortex, Visual Pathways, Acoustic Stimulation, Auditory Cortex, Auditory Perception, Cochlea, Ear, Gerbillinae, Glycine, Hearing, Neurons, Space Perception, Strychnine, Adolescent, Decision Making, Reaction Time, Astrocytoma, Brain Mapping, Brain Neoplasms, Cerebral Cortex, Electric Stimulation, Electrophysiology, Epilepsy, Temporal Lobe, Evoked Potentials, Frontal Lobe, Noise, Parietal Lobe, Scalp, Child, Language Development, Psycholinguistics, Brain, Perception, Speech, Vocalization, Animal, Discrimination (Psychology), Hippocampus, Rats, Calcium, Chelating Agents, Excitatory Postsynaptic Potentials, Glutamic Acid, Guanosine Diphosphate, In Vitro, Neuronal Plasticity, Pyramidal Cells, Receptors, AMPA, Metabotropic Glutamate, N-Methyl-D-Aspartate, Somatosensory Cortex, Synapses, Synaptic Transmission, Thionucleotides, Action Potentials, Calcium Channels, L-Type, Electric Conductivity, Entorhinal Cortex, Neurological, Long-Evans, Infant, Mathematics, Statistics, Probability Learning, Problem Solving, Psychophysics, Association Learning, Child Psychology, Habituation (Psychophysiology), Probability Theory, Analysis of Variance, Semantics, Symbolism, Behavior, Eye Movements, Macaca mulatta, Prefrontal Cortex, Cats, Dogs, Haplorhini, Photic Stimulation, Electroencephalography, Nervous System Physiology, Darkness, Grasshoppers, Light, Membrane Potentials, Neural Inhibition, Afferent, Picrotoxin, Vision, Deoxyglucose, Injections, Microspheres, Neural Pathways, Rhodamines, Choice Behavior, Speech Perception, Verbal Learning, Dominance, Cerebral, Fixation, Ocular, Language Tests, Random Allocation, Comparative Study, Saguinus, Sound Spectrography, Species Specificity, Audiometry, Auditory Threshold, Calibration, Data Interpretation, Statistical, Anesthesia, General, Electrodes, Implanted, Pitch Perception, Sound Localization, Paired-Associate Learning, Serial Learning, Auditory, Age Factors, Motion Perception, Brain Injuries, Computer Simulation, Blindness, Psychomotor Performance, Color Perception, Signal Detection (Psychology), Judgment, ROC Curve, Regression Analysis, Music, Probability, Arm, Cerebrovascular Disorders, Hemiplegia, Movement, Muscle, Skeletal, Myoclonus, Robotics, Magnetoencephalography, Phonetics, Software, Speech Production Measurement, Epilepsies, Partial, Laterality, Stereotaxic Techniques, Germany, Speech Acoustics, Verbal Behavior, Child Development, Instinct, Brain Stem, Coma, Diagnosis, Differential, Hearing Disorders, Hearing Loss, Central, Neuroma, Acoustic, Dendrites, Down-Regulation, Patch-Clamp Techniques, Wistar, Up-Regulation, Aged, Aphasia, Middle Aged, Cones (Retina), Primates, Retina, Retinal Ganglion Cells, Tympanic Membrane, Cell Communication, Extremities, Biological, Motor Activity, Rana catesbeiana, Spinal Cord, Central Nervous System, Motion, Motor Cortex, Intelligence, 11311381},\n}\n\n","author_short":["Näätänen, R","Tervaniemi, M","Sussman, E","Paavilainen, P","Winkler, I"],"key":"Naatanen-Review","id":"Naatanen-Review","bibbaseid":"ntnen-tervaniemi-sussman-paavilainen-winkler-primitiveintelligenceintheauditorycortex-2001","role":"author","urls":{},"keyword":["Computing Methodologies","Human","Language","Learning","Mental Processes","Models","Theoretical","Stochastic Processes","Support","U.S. Gov't","Non-P.H.S.","Cognition","Linguistics","Neural Networks (Computer)","Practice (Psychology)","Non-U.S. Gov't","Memory","Psychological","Task Performance and Analysis","Time Factors","Visual Perception","Adult","Attention","Discrimination Learning","Female","Male","Short-Term","Mental Recall","Orientation","Pattern Recognition","Visual","Perceptual Masking","Reading","Concept Formation","Form Perception","Animals","Corpus Striatum","Shrews","P.H.S.","Visual Cortex","Visual Pathways","Acoustic Stimulation","Auditory Cortex","Auditory Perception","Cochlea","Ear","Gerbillinae","Glycine","Hearing","Neurons","Space Perception","Strychnine","Adolescent","Decision Making","Reaction Time","Astrocytoma","Brain Mapping","Brain Neoplasms","Cerebral Cortex","Electric Stimulation","Electrophysiology","Epilepsy","Temporal Lobe","Evoked Potentials","Frontal Lobe","Noise","Parietal Lobe","Scalp","Child","Language Development","Psycholinguistics","Brain","Perception","Speech","Vocalization","Animal","Discrimination (Psychology)","Hippocampus","Rats","Calcium","Chelating Agents","Excitatory Postsynaptic Potentials","Glutamic Acid","Guanosine Diphosphate","In Vitro","Neuronal Plasticity","Pyramidal Cells","Receptors","AMPA","Metabotropic Glutamate","N-Methyl-D-Aspartate","Somatosensory Cortex","Synapses","Synaptic Transmission","Thionucleotides","Action Potentials","Calcium Channels","L-Type","Electric Conductivity","Entorhinal Cortex","Neurological","Long-Evans","Infant","Mathematics","Statistics","Probability Learning","Problem Solving","Psychophysics","Association Learning","Child Psychology","Habituation (Psychophysiology)","Probability Theory","Analysis of Variance","Semantics","Symbolism","Behavior","Eye Movements","Macaca mulatta","Prefrontal Cortex","Cats","Dogs","Haplorhini","Photic Stimulation","Electroencephalography","Nervous System Physiology","Darkness","Grasshoppers","Light","Membrane Potentials","Neural Inhibition","Afferent","Picrotoxin","Vision","Deoxyglucose","Injections","Microspheres","Neural Pathways","Rhodamines","Choice Behavior","Speech Perception","Verbal Learning","Dominance","Cerebral","Fixation","Ocular","Language Tests","Random Allocation","Comparative Study","Saguinus","Sound Spectrography","Species Specificity","Audiometry","Auditory Threshold","Calibration","Data Interpretation","Statistical","Anesthesia","General","Electrodes","Implanted","Pitch Perception","Sound Localization","Paired-Associate Learning","Serial Learning","Auditory","Age Factors","Motion Perception","Brain Injuries","Computer Simulation","Blindness","Psychomotor Performance","Color Perception","Signal Detection (Psychology)","Judgment","ROC Curve","Regression Analysis","Music","Probability","Arm","Cerebrovascular Disorders","Hemiplegia","Movement","Muscle","Skeletal","Myoclonus","Robotics","Magnetoencephalography","Phonetics","Software","Speech Production Measurement","Epilepsies","Partial","Laterality","Stereotaxic Techniques","Germany","Speech Acoustics","Verbal Behavior","Child Development","Instinct","Brain Stem","Coma","Diagnosis","Differential","Hearing Disorders","Hearing Loss","Central","Neuroma","Acoustic","Dendrites","Down-Regulation","Patch-Clamp Techniques","Wistar","Up-Regulation","Aged","Aphasia","Middle Aged","Cones (Retina)","Primates","Retina","Retinal Ganglion Cells","Tympanic Membrane","Cell Communication","Extremities","Biological","Motor Activity","Rana catesbeiana","Spinal Cord","Central Nervous System","Motion","Motor Cortex","Intelligence","11311381"],"metadata":{"authorlinks":{}}},"bibtype":"article","biburl":"https://endress.org/publications/ansgar.bib","dataSources":["xPGxHAeh3vZpx4yyE","TXa55dQbNoWnaGmMq"],"keywords":["computing methodologies","human","language","learning","mental processes","models","theoretical","stochastic processes","support","u.s. gov't","non-p.h.s.","cognition","linguistics","neural networks (computer)","practice (psychology)","non-u.s. gov't","memory","psychological","task performance and analysis","time factors","visual perception","adult","attention","discrimination learning","female","male","short-term","mental recall","orientation","pattern recognition","visual","perceptual masking","reading","concept formation","form perception","animals","corpus striatum","shrews","p.h.s.","visual cortex","visual pathways","acoustic stimulation","auditory cortex","auditory perception","cochlea","ear","gerbillinae","glycine","hearing","neurons","space perception","strychnine","adolescent","decision making","reaction time","astrocytoma","brain mapping","brain neoplasms","cerebral cortex","electric stimulation","electrophysiology","epilepsy","temporal lobe","evoked potentials","frontal lobe","noise","parietal lobe","scalp","child","language development","psycholinguistics","brain","perception","speech","vocalization","animal","discrimination (psychology)","hippocampus","rats","calcium","chelating agents","excitatory postsynaptic potentials","glutamic acid","guanosine diphosphate","in vitro","neuronal plasticity","pyramidal cells","receptors","ampa","metabotropic glutamate","n-methyl-d-aspartate","somatosensory cortex","synapses","synaptic transmission","thionucleotides","action potentials","calcium channels","l-type","electric conductivity","entorhinal cortex","neurological","long-evans","infant","mathematics","statistics","probability learning","problem solving","psychophysics","association learning","child psychology","habituation (psychophysiology)","probability theory","analysis of variance","semantics","symbolism","behavior","eye movements","macaca mulatta","prefrontal cortex","cats","dogs","haplorhini","photic stimulation","electroencephalography","nervous system physiology","darkness","grasshoppers","light","membrane potentials","neural inhibition","afferent","picrotoxin","vision","deoxyglucose","injections","microspheres","neural pathways","rhodamines","choice behavior","speech perception","verbal learning","dominance","cerebral","fixation","ocular","language tests","random allocation","comparative study","saguinus","sound spectrography","species specificity","audiometry","auditory threshold","calibration","data interpretation","statistical","anesthesia","general","electrodes","implanted","pitch perception","sound localization","paired-associate learning","serial learning","auditory","age factors","motion perception","brain injuries","computer simulation","blindness","psychomotor performance","color perception","signal detection (psychology)","judgment","roc curve","regression analysis","music","probability","arm","cerebrovascular disorders","hemiplegia","movement","muscle","skeletal","myoclonus","robotics","magnetoencephalography","phonetics","software","speech production measurement","epilepsies","partial","laterality","stereotaxic techniques","germany","speech acoustics","verbal behavior","child development","instinct","brain stem","coma","diagnosis","differential","hearing disorders","hearing loss","central","neuroma","acoustic","dendrites","down-regulation","patch-clamp techniques","wistar","up-regulation","aged","aphasia","middle aged","cones (retina)","primates","retina","retinal ganglion cells","tympanic membrane","cell communication","extremities","biological","motor activity","rana catesbeiana","spinal cord","central nervous system","motion","motor cortex","intelligence","11311381"],"search_terms":["primitive","intelligence","auditory","cortex","näätänen","tervaniemi","sussman","paavilainen","winkler"],"title":"``Primitive intelligence\" in the auditory cortex.","year":2001}