Anytime Query Answering in RDF through Evolutionary Algorithms. Oren, E., Guéret, C., & Schlobach, S. In International Semantic Web Conference (ISWC), volume 5318, of Lecture Notes in Computer Science, pages 98 - 113, 2008. Springer Berlin Heidelberg.
Paper
Website abstract bibtex We present a technique for answering queries over RDF data through an evolutionary search algorithm, using fingerprinting and Bloom filters for rapid approximate evaluation of generated solutions. Our evolutionary approach has several advantages compared to traditional database-style query answering. First, the result quality increases monotonically and converges with each evolution, offering “anytime” behaviour with arbitrary trade-off between computation time and query results; in addition, the level of approximation can be tuned by varying the size of the Bloom filters. Secondly, through Bloom filter compression we can fit large graphs in main memory, reducing the need for disk I/O during query evaluation. Finally, since the individuals evolve independently, parallel execution is straightforward. We present our prototype that evaluates basic SPARQL queries over arbitrary RDF graphs and show initial results over large datasets.
@inProceedings{
title = {Anytime Query Answering in RDF through Evolutionary Algorithms},
type = {inProceedings},
year = {2008},
identifiers = {[object Object]},
pages = {98 - 113},
volume = {5318},
websites = {http://www.springerlink.com/index/10.1007/978-3-540-88564-1},
publisher = {Springer Berlin Heidelberg},
city = {Berlin, Heidelberg},
series = {Lecture Notes in Computer Science},
id = {2783a761-6d91-368f-be69-31193e2df745},
created = {2011-04-12T09:20:32.000Z},
file_attached = {true},
profile_id = {91daf4ce-6c21-384c-a456-a6b047d3cbda},
group_id = {7fc8fad4-ddf6-3b48-b39c-c05d75ba7135},
last_modified = {2017-06-01T08:01:57.756Z},
tags = {semantic web},
read = {false},
starred = {true},
authored = {false},
confirmed = {true},
hidden = {false},
citation_key = {Oren2008a},
notes = {Acceptenace rate 16%},
abstract = {We present a technique for answering queries over RDF data through an evolutionary search algorithm, using fingerprinting and Bloom filters for rapid approximate evaluation of generated solutions. Our evolutionary approach has several advantages compared to traditional database-style query answering. First, the result quality increases monotonically and converges with each evolution, offering “anytime” behaviour with arbitrary trade-off between computation time and query results; in addition, the level of approximation can be tuned by varying the size of the Bloom filters. Secondly, through Bloom filter compression we can fit large graphs in main memory, reducing the need for disk I/O during query evaluation. Finally, since the individuals evolve independently, parallel execution is straightforward. We present our prototype that evaluates basic SPARQL queries over arbitrary RDF graphs and show initial results over large datasets.},
bibtype = {inProceedings},
author = {Oren, Eyal and Guéret, Christophe and Schlobach, Stefan},
booktitle = {International Semantic Web Conference (ISWC)}
}
Downloads: 0
{"_id":{"_str":"51f648f359ced8df44000762"},"__v":6,"authorIDs":[],"author_short":["Oren, E.","Guéret, C.","Schlobach, S."],"bibbaseid":"oren-guret-schlobach-anytimequeryansweringinrdfthroughevolutionaryalgorithms-2008","bibdata":{"title":"Anytime Query Answering in RDF through Evolutionary Algorithms","type":"inProceedings","year":"2008","identifiers":"[object Object]","pages":"98 - 113","volume":"5318","websites":"http://www.springerlink.com/index/10.1007/978-3-540-88564-1","publisher":"Springer Berlin Heidelberg","city":"Berlin, Heidelberg","series":"Lecture Notes in Computer Science","id":"2783a761-6d91-368f-be69-31193e2df745","created":"2011-04-12T09:20:32.000Z","file_attached":"true","profile_id":"91daf4ce-6c21-384c-a456-a6b047d3cbda","group_id":"7fc8fad4-ddf6-3b48-b39c-c05d75ba7135","last_modified":"2017-06-01T08:01:57.756Z","tags":"semantic web","read":false,"starred":"true","authored":false,"confirmed":"true","hidden":false,"citation_key":"Oren2008a","notes":"Acceptenace rate 16%","abstract":"We present a technique for answering queries over RDF data through an evolutionary search algorithm, using fingerprinting and Bloom filters for rapid approximate evaluation of generated solutions. Our evolutionary approach has several advantages compared to traditional database-style query answering. First, the result quality increases monotonically and converges with each evolution, offering “anytime” behaviour with arbitrary trade-off between computation time and query results; in addition, the level of approximation can be tuned by varying the size of the Bloom filters. Secondly, through Bloom filter compression we can fit large graphs in main memory, reducing the need for disk I/O during query evaluation. Finally, since the individuals evolve independently, parallel execution is straightforward. We present our prototype that evaluates basic SPARQL queries over arbitrary RDF graphs and show initial results over large datasets.","bibtype":"inProceedings","author":"Oren, Eyal and Guéret, Christophe and Schlobach, Stefan","booktitle":"International Semantic Web Conference (ISWC)","bibtex":"@inProceedings{\n title = {Anytime Query Answering in RDF through Evolutionary Algorithms},\n type = {inProceedings},\n year = {2008},\n identifiers = {[object Object]},\n pages = {98 - 113},\n volume = {5318},\n websites = {http://www.springerlink.com/index/10.1007/978-3-540-88564-1},\n publisher = {Springer Berlin Heidelberg},\n city = {Berlin, Heidelberg},\n series = {Lecture Notes in Computer Science},\n id = {2783a761-6d91-368f-be69-31193e2df745},\n created = {2011-04-12T09:20:32.000Z},\n file_attached = {true},\n profile_id = {91daf4ce-6c21-384c-a456-a6b047d3cbda},\n group_id = {7fc8fad4-ddf6-3b48-b39c-c05d75ba7135},\n last_modified = {2017-06-01T08:01:57.756Z},\n tags = {semantic web},\n read = {false},\n starred = {true},\n authored = {false},\n confirmed = {true},\n hidden = {false},\n citation_key = {Oren2008a},\n notes = {Acceptenace rate 16%},\n abstract = {We present a technique for answering queries over RDF data through an evolutionary search algorithm, using fingerprinting and Bloom filters for rapid approximate evaluation of generated solutions. Our evolutionary approach has several advantages compared to traditional database-style query answering. First, the result quality increases monotonically and converges with each evolution, offering “anytime” behaviour with arbitrary trade-off between computation time and query results; in addition, the level of approximation can be tuned by varying the size of the Bloom filters. Secondly, through Bloom filter compression we can fit large graphs in main memory, reducing the need for disk I/O during query evaluation. Finally, since the individuals evolve independently, parallel execution is straightforward. We present our prototype that evaluates basic SPARQL queries over arbitrary RDF graphs and show initial results over large datasets.},\n bibtype = {inProceedings},\n author = {Oren, Eyal and Guéret, Christophe and Schlobach, Stefan},\n booktitle = {International Semantic Web Conference (ISWC)}\n}","author_short":["Oren, E.","Guéret, C.","Schlobach, S."],"urls":{"Paper":"http://bibbase.org/service/mendeley/afa59a00-ec0f-3f21-b196-b3e7b3d7ed82/file/5fd1ad46-ba55-d6bd-77c2-03813d35559a/2008-Anytime_Query_Answering_in_RDF_through_Evolutionary_Algorithms.pdf.pdf","Website":"http://www.springerlink.com/index/10.1007/978-3-540-88564-1"},"bibbaseid":"oren-guret-schlobach-anytimequeryansweringinrdfthroughevolutionaryalgorithms-2008","role":"author","downloads":0},"bibtype":"inProceedings","biburl":null,"downloads":0,"keywords":[],"search_terms":["anytime","query","answering","rdf","through","evolutionary","algorithms","oren","guéret","schlobach"],"title":"Anytime Query Answering in RDF through Evolutionary Algorithms","year":2008}