Monolithic Silicon Probes with Flexible Parylene Cables for Neural Prostheses. Pang, C., Cham, J. G., Musallam, S., Tai, Y., Burdick, J. W., & Andersen, R. A. In 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE-NEMS '06.), pages 1125 -1128, jan., 2006.
Monolithic Silicon Probes with Flexible Parylene Cables for Neural Prostheses [pdf]Paper  doi  abstract   bibtex   2 downloads  
This work presents the first parylene-insulated silicon probes, which are used for neural prostheses to record high-level cognitive neural signals. With parylene technology, our probes have several advantages compared with the current devices. First, instead of inorganic materials (e.g. silicon dioxide, silicon nitride), the electrodes and conduction traces on the probes are insulated by parylene, an easily-deposited polymer with mechanical flexibility and biocompatibility. As a result, the probes exhibit better electrical and mechanical properties. Second, flexible parylene cables are monolithically integrated with the probes, which arm the probes with very high flexibility to be easily assembled to a high density 3-D array and at the same time provide an ideal method to transmit neural signals through skull during chronic recording. The all dry fabrication process and a 4times4 probe array (64 electrodes) were demonstrated. The probes were successfully tested electrically and mechanically in rat cortex. Neural signals were properly recorded

Downloads: 2