A Subtype Classification of Hematopoietic Cancer Using Machine Learning Approach. Park, K. H., Pham, V. H., Davagdorj, K., Munkhdalai, L., & Ryu, K. H. In Communications in Computer and Information Science, volume 1371 CCIS, pages 113–121, 2021. ISSN: 18650937
doi  abstract   bibtex   
Hematopoietic cancer is the malignant transformation in immune system cells. This cancer usually occurs in areas such as bone marrow and lymph nodes, the hematopoietic organ, and is a frightening disease that collapses the immune system with its own mobile characteristics. Hematopoietic cancer is characterized by the cells that are expressed, which are usually difficult to detect in the hematopoiesis process. For this reason, we focused on the five subtypes of hematopoietic cancer and conducted a study on classifying by applying machine learning algorithms both contextual approach and non-contextual approach. First, we applied PCA approach for extracting suited feature for building classification model for subtype classification. And then, we used four machine learning classification algorithms (support vector machine, k-nearest neighbor, random forest, neural network) and synthetic minority oversampling technique for generating a model. As a result, most classifiers performed better when the oversampling technique was applied, and the best result was that oversampling applied random forest produced 95.24% classification performance.
@inproceedings{Pham2021,
	title = {A {Subtype} {Classification} of {Hematopoietic} {Cancer} {Using} {Machine} {Learning} {Approach}},
	volume = {1371 CCIS},
	isbn = {9789811616846},
	doi = {10.1007/978-981-16-1685-3_10},
	abstract = {Hematopoietic cancer is the malignant transformation in immune system cells. This cancer usually occurs in areas such as bone marrow and lymph nodes, the hematopoietic organ, and is a frightening disease that collapses the immune system with its own mobile characteristics. Hematopoietic cancer is characterized by the cells that are expressed, which are usually difficult to detect in the hematopoiesis process. For this reason, we focused on the five subtypes of hematopoietic cancer and conducted a study on classifying by applying machine learning algorithms both contextual approach and non-contextual approach. First, we applied PCA approach for extracting suited feature for building classification model for subtype classification. And then, we used four machine learning classification algorithms (support vector machine, k-nearest neighbor, random forest, neural network) and synthetic minority oversampling technique for generating a model. As a result, most classifiers performed better when the oversampling technique was applied, and the best result was that oversampling applied random forest produced 95.24\% classification performance.},
	booktitle = {Communications in {Computer} and {Information} {Science}},
	author = {Park, Kwang Ho and Pham, Van Huy and Davagdorj, Khishigsuren and Munkhdalai, Lkhagvadorj and Ryu, Keun Ho},
	year = {2021},
	note = {ISSN: 18650937},
	keywords = {Gene expression, Hematopoietic cancer, Principal component analysis, Subtype classification, Synthetic minority oversampling technique},
	pages = {113--121},
}

Downloads: 0