Plant zonation in low-latitude salt marshes: disentangling the roles of flooding, salinity and competition. Pennings, S. C., Grant, M., & Bertness, M. D. Journal of Ecology, 2005.
abstract   bibtex   
We investigated the factors producing zonation patterns of the dominant plants in south-eastern USA salt marshes where Juncus roemerianus dominates the high marsh, and Spartina alterniflora the middle and low marsh. Juncus did not occur naturally in the Spartina zone and performed poorly when transplanted there, irrespective of whether neighbours were present or removed, indicating that its lower limit was set by physical stress. In contrast, although Spartina occurred naturally at low densities in the Juncus zone, it performed well if transplanted there only if neighbours were removed, indicating that its upper limit was set by competition. Parallel laboratory and field manipulations of flooding, salinity and competition indicated that the lower limit of Juncus was mediated by both flooding and salinity, but not by competition. The general mechanisms producing zonation patterns of vegetation in coastal salt marshes may be universal, as suggested by previous studies, but the importance of particular factors is likely to vary geographically. In particular, salinity stress probably plays a much more important role in mediating plant zonation patterns at lower latitudes. Our results suggest that the nature of ecological interactions is likely to vary geographically because of variation in the physical environment, and this variation must be taken into account in order to successfully generalize the results of field studies across geographical scales.
@article{pennings_plant_2005,
	title = {Plant zonation in low-latitude salt marshes: disentangling the roles of flooding, salinity and competition},
	volume = {93},
	abstract = {We investigated the factors producing zonation patterns of the dominant plants in south-eastern USA salt marshes where Juncus roemerianus dominates the high marsh, and Spartina alterniflora the middle and low marsh. Juncus did not occur naturally in the Spartina zone and performed poorly when transplanted there, irrespective of whether neighbours were present or removed, indicating that its lower limit was set by physical stress. In contrast, although Spartina occurred naturally at low densities in the Juncus zone, it performed well if transplanted there only if neighbours were removed, indicating that its upper limit was set by competition. Parallel laboratory and field manipulations of flooding, salinity and competition indicated that the lower limit of Juncus was mediated by both flooding and salinity, but not by competition. The general mechanisms producing zonation patterns of vegetation in coastal salt marshes may be universal, as suggested by previous studies, but the importance of particular factors is likely to vary geographically. In particular, salinity stress probably plays a much more important role in mediating plant zonation patterns at lower latitudes. Our results suggest that the nature of ecological interactions is likely to vary geographically because of variation in the physical environment, and this variation must be taken into account in order to successfully generalize the results of field studies across geographical scales.},
	journal = {Journal of Ecology},
	author = {Pennings, Steven C. and Grant, Mary-Bestor. and Bertness, Mark D.},
	year = {2005},
	keywords = {GCE, salinity, salt marsh, plant, competition, FLOODING, zonation}
}

Downloads: 0