Current approaches to modelling the spread of wildland fire: a review. Perry, G. L. W. Progress in Physical Geography, 22(2):222–245, June, 1998.
Current approaches to modelling the spread of wildland fire: a review [link]Paper  abstract   bibtex   
This review considers the development of some of the models and modelling approaches designed to predict the spread and spatial behaviour of wildland fire events. Such events and their accurate prediction are of great importance to those seeking to understand and manage fire-prone ecosystems. The key problem which fire modelling seeks to address is outlined. Models predicting the rate of fire spread may be classified as physical, semi-physical or empirical according to the nature of their construction. The benefits and shortcomings of Each type of model are considered with reference to specific examples of each type. It is shown that there are problems with current operational models which restrict their effective use. However, the development of rigorous physical models as replacements is impeded by conceptual and practical difficulties. Accurate estimation of the rate of spread and the intensity of a fire allows prediction of the final shape and area of a fire event. The modelling techniques used to estimate the shape and area of a fire are considered including the development of sophisticated computer-based simulations of fire spread. Spatial information technologies such as remote sensing and geographic information systems (GIS) offer great potential for the effective modelling of wildland fire behaviour. While such spatial information technologies have been frequently used in the evaluation of fire danger risk, their use for the simulation of the spatiotemporal behaviour of wildland fire is not common. The way in which spatial information technologies and decision-support systems are used for fire risk evaluation and fire spread simulation is discussed. Two research areas of great importance if fire modelling techniques are to improve are a better understanding of fire-dependent phenomena and the development of a 'new generation' of fire spread models; current trends in these areas of research are evaluated.
@article{perry_current_1998,
	title = {Current approaches to modelling the spread of wildland fire: a review},
	volume = {22},
	issn = {0309-1333},
	url = {://000074866600004},
	abstract = {This review considers the development of some of the models and modelling approaches designed to predict the spread and spatial behaviour of wildland fire events. Such events and their accurate prediction are of great importance to those seeking to understand and manage fire-prone ecosystems. The key problem which fire modelling seeks to address is outlined. Models predicting the rate of fire spread may be classified as physical, semi-physical or empirical according to the nature of their construction. The benefits and shortcomings of Each type of model are considered with reference to specific examples of each type. It is shown that there are problems with current operational models which restrict their effective use. However, the development of rigorous physical models as replacements is impeded by conceptual and practical difficulties. Accurate estimation of the rate of spread and the intensity of a fire allows prediction of the final shape and area of a fire event. The modelling techniques used to estimate the shape and area of a fire are considered including the development of sophisticated computer-based simulations of fire spread. Spatial information technologies such as remote sensing and geographic information systems (GIS) offer great potential for the effective modelling of wildland fire behaviour. While such spatial information technologies have been frequently used in the evaluation of fire danger risk, their use for the simulation of the spatiotemporal behaviour of wildland fire is not common. The way in which spatial information technologies and decision-support systems are used for fire risk evaluation and fire spread simulation is discussed. Two research areas of great importance if fire modelling techniques are to improve are a better understanding of fire-dependent phenomena and the development of a 'new generation' of fire spread models; current trends in these areas of research are evaluated.},
	number = {2},
	journal = {Progress in Physical Geography},
	author = {Perry, G. L. W.},
	month = jun,
	year = {1998},
	pages = {222--245},
}

Downloads: 0