Multiple Imputation of Missing Repeated Outcome Measurements Did Not Add to Linear Mixed-Effects Models. Peters, S. A., Bots, M. L., den Ruijter , H. M., Palmer, M. K., Grobbee, D. E., Crouse, J. R., O'Leary, D. H., Evans, G. W., Raichlen, J. S., Moons, K. G., Koffijberg, H., & METEOR study group J Clin Epi, 65(6):686-695, 2012. doi abstract bibtex To assess the added value of multiple imputation (MI) of missing repeated outcomes measures in longitudinal data sets analyzed with linear mixed-effects (LME) models. Data were used from a trial on the effects of Rosuvastatin on rate of change in carotid intima-media thickness (CIMT). The reference treatment effect was derived from a complete data set. Scenarios and proportions of missing values in CIMT measurements were applied and LME analyses were used before and after MI. The added value of MI, in terms of bias and precision, was assessed using the mean-squared error (MSE) of the treatment effects and coverage of the 95% confidence interval. The reference treatment effect was -0.0177mm/y. The MSEs for LME analysis without and with MI were similar in scenarios with up to 40% missing values. Coverage was large in all scenarios and was similar for LME with and without MI. Our study empirically shows that MI of missing end point data before LME analyses does not increase precision in the estimated rate of change in the end point. Hence, MI had no added value in this setting and standard LME modeling remains the method of choice.
@article{pet12mul,
title = {Multiple Imputation of Missing Repeated Outcome Measurements Did Not Add to Linear Mixed-Effects Models.},
volume = {65},
abstract = {To assess the added value of multiple imputation (MI) of missing repeated outcomes measures in longitudinal data sets analyzed with linear mixed-effects (LME) models. Data were used from a trial on the effects of Rosuvastatin on rate of change in carotid intima-media thickness (CIMT). The reference treatment effect was derived from a complete data set. Scenarios and proportions of missing values in CIMT measurements were applied and LME analyses were used before and after MI. The added value of MI, in terms of bias and precision, was assessed using the mean-squared error (MSE) of the treatment effects and coverage of the 95\% confidence interval. The reference treatment effect was -0.0177mm/y. The MSEs for LME analysis without and with MI were similar in scenarios with up to 40\% missing values. Coverage was large in all scenarios and was similar for LME with and without MI. Our study empirically shows that MI of missing end point data before LME analyses does not increase precision in the estimated rate of change in the end point. Hence, MI had no added value in this setting and standard LME modeling remains the method of choice.},
number = {6},
journal = {J Clin Epi},
doi = {10.1016/j.jclinepi.2011.11.012},
author = {Peters, Sanne A. and Bots, Michiel L. and {den Ruijter}, Hester M. and Palmer, Mike K. and Grobbee, Diederick E. and Crouse, John R. and O'Leary, Daniel H. and Evans, Gregory W. and Raichlen, Joel S. and Moons, Karel G. and Koffijberg, Hendrik and {METEOR study group}},
year = {2012},
keywords = {serial-data,imputation,longitudinal,missing,mixed-effects-model,repeated-measures},
pages = {686-695},
citeulike-article-id = {13265934},
citeulike-linkout-0 = {http://dx.doi.org/10.1016/j.jclinepi.2011.11.012},
posted-at = {2014-07-14 14:10:07},
priority = {0}
}
Downloads: 0
{"_id":"3zvLvne77hmtv2pNo","bibbaseid":"peters-bots-denruijter-palmer-grobbee-crouse-oleary-evans-etal-multipleimputationofmissingrepeatedoutcomemeasurementsdidnotaddtolinearmixedeffectsmodels-2012","downloads":0,"creationDate":"2018-06-23T20:06:34.075Z","title":"Multiple Imputation of Missing Repeated Outcome Measurements Did Not Add to Linear Mixed-Effects Models.","author_short":["Peters, S. A.","Bots, M. L.","den Ruijter , H. M.","Palmer, M. K.","Grobbee, D. E.","Crouse, J. R.","O'Leary, D. H.","Evans, G. W.","Raichlen, J. S.","Moons, K. G.","Koffijberg, H.","METEOR study group"],"year":2012,"bibtype":"article","biburl":"http://hbiostat.org/bib/harrelfe.bib","bibdata":{"bibtype":"article","type":"article","title":"Multiple Imputation of Missing Repeated Outcome Measurements Did Not Add to Linear Mixed-Effects Models.","volume":"65","abstract":"To assess the added value of multiple imputation (MI) of missing repeated outcomes measures in longitudinal data sets analyzed with linear mixed-effects (LME) models. Data were used from a trial on the effects of Rosuvastatin on rate of change in carotid intima-media thickness (CIMT). The reference treatment effect was derived from a complete data set. Scenarios and proportions of missing values in CIMT measurements were applied and LME analyses were used before and after MI. The added value of MI, in terms of bias and precision, was assessed using the mean-squared error (MSE) of the treatment effects and coverage of the 95% confidence interval. The reference treatment effect was -0.0177mm/y. The MSEs for LME analysis without and with MI were similar in scenarios with up to 40% missing values. Coverage was large in all scenarios and was similar for LME with and without MI. Our study empirically shows that MI of missing end point data before LME analyses does not increase precision in the estimated rate of change in the end point. Hence, MI had no added value in this setting and standard LME modeling remains the method of choice.","number":"6","journal":"J Clin Epi","doi":"10.1016/j.jclinepi.2011.11.012","author":[{"propositions":[],"lastnames":["Peters"],"firstnames":["Sanne","A."],"suffixes":[]},{"propositions":[],"lastnames":["Bots"],"firstnames":["Michiel","L."],"suffixes":[]},{"propositions":["den Ruijter"],"lastnames":[],"firstnames":["Hester","M."],"suffixes":[]},{"propositions":[],"lastnames":["Palmer"],"firstnames":["Mike","K."],"suffixes":[]},{"propositions":[],"lastnames":["Grobbee"],"firstnames":["Diederick","E."],"suffixes":[]},{"propositions":[],"lastnames":["Crouse"],"firstnames":["John","R."],"suffixes":[]},{"propositions":[],"lastnames":["O'Leary"],"firstnames":["Daniel","H."],"suffixes":[]},{"propositions":[],"lastnames":["Evans"],"firstnames":["Gregory","W."],"suffixes":[]},{"propositions":[],"lastnames":["Raichlen"],"firstnames":["Joel","S."],"suffixes":[]},{"propositions":[],"lastnames":["Moons"],"firstnames":["Karel","G."],"suffixes":[]},{"propositions":[],"lastnames":["Koffijberg"],"firstnames":["Hendrik"],"suffixes":[]},{"firstnames":[],"propositions":[],"lastnames":["METEOR study group"],"suffixes":[]}],"year":"2012","keywords":"serial-data,imputation,longitudinal,missing,mixed-effects-model,repeated-measures","pages":"686-695","citeulike-article-id":"13265934","citeulike-linkout-0":"http://dx.doi.org/10.1016/j.jclinepi.2011.11.012","posted-at":"2014-07-14 14:10:07","priority":"0","bibtex":"@article{pet12mul,\n title = {Multiple Imputation of Missing Repeated Outcome Measurements Did Not Add to Linear Mixed-Effects Models.},\n volume = {65},\n abstract = {To assess the added value of multiple imputation (MI) of missing repeated outcomes measures in longitudinal data sets analyzed with linear mixed-effects (LME) models. Data were used from a trial on the effects of Rosuvastatin on rate of change in carotid intima-media thickness (CIMT). The reference treatment effect was derived from a complete data set. Scenarios and proportions of missing values in CIMT measurements were applied and LME analyses were used before and after MI. The added value of MI, in terms of bias and precision, was assessed using the mean-squared error (MSE) of the treatment effects and coverage of the 95\\% confidence interval. The reference treatment effect was -0.0177mm/y. The MSEs for LME analysis without and with MI were similar in scenarios with up to 40\\% missing values. Coverage was large in all scenarios and was similar for LME with and without MI. Our study empirically shows that MI of missing end point data before LME analyses does not increase precision in the estimated rate of change in the end point. Hence, MI had no added value in this setting and standard LME modeling remains the method of choice.},\n number = {6},\n journal = {J Clin Epi},\n doi = {10.1016/j.jclinepi.2011.11.012},\n author = {Peters, Sanne A. and Bots, Michiel L. and {den Ruijter}, Hester M. and Palmer, Mike K. and Grobbee, Diederick E. and Crouse, John R. and O'Leary, Daniel H. and Evans, Gregory W. and Raichlen, Joel S. and Moons, Karel G. and Koffijberg, Hendrik and {METEOR study group}},\n year = {2012},\n keywords = {serial-data,imputation,longitudinal,missing,mixed-effects-model,repeated-measures},\n pages = {686-695},\n citeulike-article-id = {13265934},\n citeulike-linkout-0 = {http://dx.doi.org/10.1016/j.jclinepi.2011.11.012},\n posted-at = {2014-07-14 14:10:07},\n priority = {0}\n}\n\n","author_short":["Peters, S. A.","Bots, M. L.","den Ruijter , H. M.","Palmer, M. K.","Grobbee, D. E.","Crouse, J. R.","O'Leary, D. H.","Evans, G. W.","Raichlen, J. S.","Moons, K. G.","Koffijberg, H.","METEOR study group"],"key":"pet12mul","id":"pet12mul","bibbaseid":"peters-bots-denruijter-palmer-grobbee-crouse-oleary-evans-etal-multipleimputationofmissingrepeatedoutcomemeasurementsdidnotaddtolinearmixedeffectsmodels-2012","role":"author","urls":{},"keyword":["serial-data","imputation","longitudinal","missing","mixed-effects-model","repeated-measures"],"downloads":0},"search_terms":["multiple","imputation","missing","repeated","outcome","measurements","add","linear","mixed","effects","models","peters","bots","den ruijter ","palmer","grobbee","crouse","o'leary","evans","raichlen","moons","koffijberg","meteor study group"],"keywords":["imputation","longitudinal","missing","mixed-effects-model","repeated-measures","serial-data","*import"],"authorIDs":[],"dataSources":["mEQakjn8ggpMsnGJi"]}