Mesoscale and Radar Observations of the Fort Collins Flash Flood of 28 July 1997. Petersen, W. A., Carey, L. D., Rutledge, S. A., Knievel, J. C., Johnson, R. H., Doesken, N. J., McKee, T. B., Vonder Haar, T., & Weaver, J. F. Bulletin of the American Meteorological Society, 80(2):191–216, February, 1999. Paper doi abstract bibtex On the evening of 28 July 1997 the city of Fort Collins, Colorado, experienced a devastating flash flood that caused five fatalities and over 200 million dollars in damage. Maximum accumulations of rainfall in the western part of the city exceeded 10 in. in a 6-h period. This study presents a multiscale meteorological overview of the event utilizing a wide variety of instrument platforms and data including rain gauge, CSU—CHILL multiparameter radar, Next Generation Radar, National Lightning Detection Network, surface and Aircraft Communication Addressing and Reporting System observations, satellite observations, and synoptic analyses. Many of the meteorological features associated with the Fort Collins flash flood typify those of similar events in the western United States. Prominent features in the Fort Collins case included the presence of a 500-hPa ridge axis over northeastern Colorado; a weak shortwave trough on the western side of the ridge; postfrontal easterly upslope flow at low levels; weak to moderate southwesterly flow aloft; a deep, moist warm layer in the sounding; and the occurrence of a quasi-stationary rainfall system. In contrast to previous events such as the Rapid City or Big Thompson floods, the thermodynamic environment of the Fort Collins storm exhibited only modest instability, consistent with low lightning flash rates and an absence of hail and other severe storm signatures. Radar, rain gauge, and lightning observations provided a detailed view of the cloud and precipitation morphology. Polarimetric radar observations suggest that a coupling between warm-rain collision coalescence processes and ice processes played an important role in the rainfall production. Dual-Doppler radar and mesoscale wind analyses revealed that the low-level flow field associated with a bow echo located 60 km to the southeast of Fort Collins may have been responsible for a brief easterly acceleration in the low-level winds during the last 1.5 h of the event. The enhanced flow interacted with both topography and the convection located over Fort Collins, resulting in a quasi-stationary convective system and the heaviest rainfall of the evening.
@article{petersen_mesoscale_1999,
title = {Mesoscale and {Radar} {Observations} of the {Fort} {Collins} {Flash} {Flood} of 28 {July} 1997},
volume = {80},
issn = {0003-0007},
url = {http://journals.ametsoc.org/doi/abs/10.1175/1520-0477(1999)080%3C0191%3AMAROOT%3E2.0.CO%3B2},
doi = {10.1175/1520-0477(1999)080<0191:MAROOT>2.0.CO;2},
abstract = {On the evening of 28 July 1997 the city of Fort Collins, Colorado, experienced a devastating flash flood that caused five fatalities and over 200 million dollars in damage. Maximum accumulations of rainfall in the western part of the city exceeded 10 in. in a 6-h period. This study presents a multiscale meteorological overview of the event utilizing a wide variety of instrument platforms and data including rain gauge, CSU—CHILL multiparameter radar, Next Generation Radar, National Lightning Detection Network, surface and Aircraft Communication Addressing and Reporting System observations, satellite observations, and synoptic analyses. Many of the meteorological features associated with the Fort Collins flash flood typify those of similar events in the western United States. Prominent features in the Fort Collins case included the presence of a 500-hPa ridge axis over northeastern Colorado; a weak shortwave trough on the western side of the ridge; postfrontal easterly upslope flow at low levels; weak to moderate southwesterly flow aloft; a deep, moist warm layer in the sounding; and the occurrence of a quasi-stationary rainfall system. In contrast to previous events such as the Rapid City or Big Thompson floods, the thermodynamic environment of the Fort Collins storm exhibited only modest instability, consistent with low lightning flash rates and an absence of hail and other severe storm signatures. Radar, rain gauge, and lightning observations provided a detailed view of the cloud and precipitation morphology. Polarimetric radar observations suggest that a coupling between warm-rain collision coalescence processes and ice processes played an important role in the rainfall production. Dual-Doppler radar and mesoscale wind analyses revealed that the low-level flow field associated with a bow echo located 60 km to the southeast of Fort Collins may have been responsible for a brief easterly acceleration in the low-level winds during the last 1.5 h of the event. The enhanced flow interacted with both topography and the convection located over Fort Collins, resulting in a quasi-stationary convective system and the heaviest rainfall of the evening.},
number = {2},
urldate = {2015-11-03TZ},
journal = {Bulletin of the American Meteorological Society},
author = {Petersen, Walter A. and Carey, Lawrence D. and Rutledge, Steven A. and Knievel, Jason C. and Johnson, Richard H. and Doesken, Nolan J. and McKee, Thomas B. and Vonder Haar, Thomas and Weaver, John F.},
month = feb,
year = {1999},
pages = {191--216}
}
Downloads: 0
{"_id":"nMWzWGNE2hFxXD5xF","bibbaseid":"petersen-carey-rutledge-knievel-johnson-doesken-mckee-vonderhaar-etal-mesoscaleandradarobservationsofthefortcollinsflashfloodof28july1997-1999","downloads":0,"creationDate":"2018-12-26T15:07:42.204Z","title":"Mesoscale and Radar Observations of the Fort Collins Flash Flood of 28 July 1997","author_short":["Petersen, W. A.","Carey, L. D.","Rutledge, S. A.","Knievel, J. C.","Johnson, R. H.","Doesken, N. J.","McKee, T. B.","Vonder Haar, T.","Weaver, J. F."],"year":1999,"bibtype":"article","biburl":"https://bibbase.org/zotero/shahinoor","bibdata":{"bibtype":"article","type":"article","title":"Mesoscale and Radar Observations of the Fort Collins Flash Flood of 28 July 1997","volume":"80","issn":"0003-0007","url":"http://journals.ametsoc.org/doi/abs/10.1175/1520-0477(1999)080%3C0191%3AMAROOT%3E2.0.CO%3B2","doi":"10.1175/1520-0477(1999)080<0191:MAROOT>2.0.CO;2","abstract":"On the evening of 28 July 1997 the city of Fort Collins, Colorado, experienced a devastating flash flood that caused five fatalities and over 200 million dollars in damage. Maximum accumulations of rainfall in the western part of the city exceeded 10 in. in a 6-h period. This study presents a multiscale meteorological overview of the event utilizing a wide variety of instrument platforms and data including rain gauge, CSU—CHILL multiparameter radar, Next Generation Radar, National Lightning Detection Network, surface and Aircraft Communication Addressing and Reporting System observations, satellite observations, and synoptic analyses. Many of the meteorological features associated with the Fort Collins flash flood typify those of similar events in the western United States. Prominent features in the Fort Collins case included the presence of a 500-hPa ridge axis over northeastern Colorado; a weak shortwave trough on the western side of the ridge; postfrontal easterly upslope flow at low levels; weak to moderate southwesterly flow aloft; a deep, moist warm layer in the sounding; and the occurrence of a quasi-stationary rainfall system. In contrast to previous events such as the Rapid City or Big Thompson floods, the thermodynamic environment of the Fort Collins storm exhibited only modest instability, consistent with low lightning flash rates and an absence of hail and other severe storm signatures. Radar, rain gauge, and lightning observations provided a detailed view of the cloud and precipitation morphology. Polarimetric radar observations suggest that a coupling between warm-rain collision coalescence processes and ice processes played an important role in the rainfall production. Dual-Doppler radar and mesoscale wind analyses revealed that the low-level flow field associated with a bow echo located 60 km to the southeast of Fort Collins may have been responsible for a brief easterly acceleration in the low-level winds during the last 1.5 h of the event. The enhanced flow interacted with both topography and the convection located over Fort Collins, resulting in a quasi-stationary convective system and the heaviest rainfall of the evening.","number":"2","urldate":"2015-11-03TZ","journal":"Bulletin of the American Meteorological Society","author":[{"propositions":[],"lastnames":["Petersen"],"firstnames":["Walter","A."],"suffixes":[]},{"propositions":[],"lastnames":["Carey"],"firstnames":["Lawrence","D."],"suffixes":[]},{"propositions":[],"lastnames":["Rutledge"],"firstnames":["Steven","A."],"suffixes":[]},{"propositions":[],"lastnames":["Knievel"],"firstnames":["Jason","C."],"suffixes":[]},{"propositions":[],"lastnames":["Johnson"],"firstnames":["Richard","H."],"suffixes":[]},{"propositions":[],"lastnames":["Doesken"],"firstnames":["Nolan","J."],"suffixes":[]},{"propositions":[],"lastnames":["McKee"],"firstnames":["Thomas","B."],"suffixes":[]},{"propositions":[],"lastnames":["Vonder","Haar"],"firstnames":["Thomas"],"suffixes":[]},{"propositions":[],"lastnames":["Weaver"],"firstnames":["John","F."],"suffixes":[]}],"month":"February","year":"1999","pages":"191–216","bibtex":"@article{petersen_mesoscale_1999,\n\ttitle = {Mesoscale and {Radar} {Observations} of the {Fort} {Collins} {Flash} {Flood} of 28 {July} 1997},\n\tvolume = {80},\n\tissn = {0003-0007},\n\turl = {http://journals.ametsoc.org/doi/abs/10.1175/1520-0477(1999)080%3C0191%3AMAROOT%3E2.0.CO%3B2},\n\tdoi = {10.1175/1520-0477(1999)080<0191:MAROOT>2.0.CO;2},\n\tabstract = {On the evening of 28 July 1997 the city of Fort Collins, Colorado, experienced a devastating flash flood that caused five fatalities and over 200 million dollars in damage. Maximum accumulations of rainfall in the western part of the city exceeded 10 in. in a 6-h period. This study presents a multiscale meteorological overview of the event utilizing a wide variety of instrument platforms and data including rain gauge, CSU—CHILL multiparameter radar, Next Generation Radar, National Lightning Detection Network, surface and Aircraft Communication Addressing and Reporting System observations, satellite observations, and synoptic analyses. Many of the meteorological features associated with the Fort Collins flash flood typify those of similar events in the western United States. Prominent features in the Fort Collins case included the presence of a 500-hPa ridge axis over northeastern Colorado; a weak shortwave trough on the western side of the ridge; postfrontal easterly upslope flow at low levels; weak to moderate southwesterly flow aloft; a deep, moist warm layer in the sounding; and the occurrence of a quasi-stationary rainfall system. In contrast to previous events such as the Rapid City or Big Thompson floods, the thermodynamic environment of the Fort Collins storm exhibited only modest instability, consistent with low lightning flash rates and an absence of hail and other severe storm signatures. Radar, rain gauge, and lightning observations provided a detailed view of the cloud and precipitation morphology. Polarimetric radar observations suggest that a coupling between warm-rain collision coalescence processes and ice processes played an important role in the rainfall production. Dual-Doppler radar and mesoscale wind analyses revealed that the low-level flow field associated with a bow echo located 60 km to the southeast of Fort Collins may have been responsible for a brief easterly acceleration in the low-level winds during the last 1.5 h of the event. The enhanced flow interacted with both topography and the convection located over Fort Collins, resulting in a quasi-stationary convective system and the heaviest rainfall of the evening.},\n\tnumber = {2},\n\turldate = {2015-11-03TZ},\n\tjournal = {Bulletin of the American Meteorological Society},\n\tauthor = {Petersen, Walter A. and Carey, Lawrence D. and Rutledge, Steven A. and Knievel, Jason C. and Johnson, Richard H. and Doesken, Nolan J. and McKee, Thomas B. and Vonder Haar, Thomas and Weaver, John F.},\n\tmonth = feb,\n\tyear = {1999},\n\tpages = {191--216}\n}\n\n","author_short":["Petersen, W. A.","Carey, L. D.","Rutledge, S. A.","Knievel, J. C.","Johnson, R. H.","Doesken, N. J.","McKee, T. B.","Vonder Haar, T.","Weaver, J. F."],"key":"petersen_mesoscale_1999","id":"petersen_mesoscale_1999","bibbaseid":"petersen-carey-rutledge-knievel-johnson-doesken-mckee-vonderhaar-etal-mesoscaleandradarobservationsofthefortcollinsflashfloodof28july1997-1999","role":"author","urls":{"Paper":"http://journals.ametsoc.org/doi/abs/10.1175/1520-0477(1999)080%3C0191%3AMAROOT%3E2.0.CO%3B2"},"downloads":0,"html":""},"search_terms":["mesoscale","radar","observations","fort","collins","flash","flood","july","1997","petersen","carey","rutledge","knievel","johnson","doesken","mckee","vonder haar","weaver"],"keywords":[],"authorIDs":[],"dataSources":["bdbZxt8yLzFQroy43"]}