Unequal misses during the flash-induced advancement of photosystem II: effects of the S state and acceptor side cycles. Pham, L. V., Janna Olmos, J. D., Chernev, P., Kargul, J., & Messinger, J. Photosynthesis Research, 139(1):93–106, March, 2019. Paper doi abstract bibtex Photosynthetic water oxidation is catalyzed by the oxygen-evolving complex (OEC) in photosystem II (PSII). This process is energetically driven by light-induced charge separation in the reaction center of PSII, which leads to a stepwise accumulation of oxidizing equivalents in the OEC (Si states, i = 0–4) resulting in O2 evolution after each fourth flash, and to the reduction of plastoquinone to plastoquinol on the acceptor side of PSII. However, the Si-state advancement is not perfect, which according to the Kok model is described by miss-hits (misses). These may be caused by redox equilibria or kinetic limitations on the donor (OEC) or the acceptor side. In this study, we investigate the effects of individual S state transitions and of the quinone acceptor side on the miss parameter by analyzing the flash-induced oxygen evolution patterns and the S2, S3 and S0 state lifetimes in thylakoid samples of the extremophilic red alga Cyanidioschyzon merolae. The data are analyzed employing a global fit analysis and the results are compared to the data obtained previously for spinach thylakoids. These two organisms were selected, because the redox potential of QA/QA− in PSII is significantly less negative in C. merolae (Em = − 104 mV) than in spinach (Em = − 163 mV). This significant difference in redox potential was expected to allow the disentanglement of acceptor and donor side effects on the miss parameter. Our data indicate that, at slightly acidic and neutral pH values, the Em of QA−/QA plays only a minor role for the miss parameter. By contrast, the increased energy gap for the backward electron transfer from QA− to Pheo slows down the charge recombination reaction with the S3 and S2 states considerably. In addition, our data support the concept that the S2 → S3 transition is the least efficient step during the oxidation of water to molecular oxygen in the Kok cycle of PSII.
@article{pham_unequal_2019,
title = {Unequal misses during the flash-induced advancement of photosystem {II}: effects of the {S} state and acceptor side cycles},
volume = {139},
issn = {1573-5079},
shorttitle = {Unequal misses during the flash-induced advancement of photosystem {II}},
url = {https://doi.org/10.1007/s11120-018-0574-0},
doi = {10.1007/s11120-018-0574-0},
abstract = {Photosynthetic water oxidation is catalyzed by the oxygen-evolving complex (OEC) in photosystem II (PSII). This process is energetically driven by light-induced charge separation in the reaction center of PSII, which leads to a stepwise accumulation of oxidizing equivalents in the OEC (Si states, i = 0–4) resulting in O2 evolution after each fourth flash, and to the reduction of plastoquinone to plastoquinol on the acceptor side of PSII. However, the Si-state advancement is not perfect, which according to the Kok model is described by miss-hits (misses). These may be caused by redox equilibria or kinetic limitations on the donor (OEC) or the acceptor side. In this study, we investigate the effects of individual S state transitions and of the quinone acceptor side on the miss parameter by analyzing the flash-induced oxygen evolution patterns and the S2, S3 and S0 state lifetimes in thylakoid samples of the extremophilic red alga Cyanidioschyzon merolae. The data are analyzed employing a global fit analysis and the results are compared to the data obtained previously for spinach thylakoids. These two organisms were selected, because the redox potential of QA/QA− in PSII is significantly less negative in C. merolae (Em = − 104 mV) than in spinach (Em = − 163 mV). This significant difference in redox potential was expected to allow the disentanglement of acceptor and donor side effects on the miss parameter. Our data indicate that, at slightly acidic and neutral pH values, the Em of QA−/QA plays only a minor role for the miss parameter. By contrast, the increased energy gap for the backward electron transfer from QA− to Pheo slows down the charge recombination reaction with the S3 and S2 states considerably. In addition, our data support the concept that the S2 → S3 transition is the least efficient step during the oxidation of water to molecular oxygen in the Kok cycle of PSII.},
language = {en},
number = {1},
urldate = {2024-10-16},
journal = {Photosynthesis Research},
author = {Pham, Long Vo and Janna Olmos, Julian David and Chernev, Petko and Kargul, Joanna and Messinger, Johannes},
month = mar,
year = {2019},
keywords = {Cyanidioschyzon merolae, Flash-induced oxygen oscillation pattern (FIOP), Mechanism of water oxidation, Photosynthesis, Photosystem II, Unequal miss parameter},
pages = {93--106},
}
Downloads: 0
{"_id":"wT5XnwScDdAkBpr34","bibbaseid":"pham-jannaolmos-chernev-kargul-messinger-unequalmissesduringtheflashinducedadvancementofphotosystemiieffectsofthesstateandacceptorsidecycles-2019","author_short":["Pham, L. V.","Janna Olmos, J. D.","Chernev, P.","Kargul, J.","Messinger, J."],"bibdata":{"bibtype":"article","type":"article","title":"Unequal misses during the flash-induced advancement of photosystem II: effects of the S state and acceptor side cycles","volume":"139","issn":"1573-5079","shorttitle":"Unequal misses during the flash-induced advancement of photosystem II","url":"https://doi.org/10.1007/s11120-018-0574-0","doi":"10.1007/s11120-018-0574-0","abstract":"Photosynthetic water oxidation is catalyzed by the oxygen-evolving complex (OEC) in photosystem II (PSII). This process is energetically driven by light-induced charge separation in the reaction center of PSII, which leads to a stepwise accumulation of oxidizing equivalents in the OEC (Si states, i = 0–4) resulting in O2 evolution after each fourth flash, and to the reduction of plastoquinone to plastoquinol on the acceptor side of PSII. However, the Si-state advancement is not perfect, which according to the Kok model is described by miss-hits (misses). These may be caused by redox equilibria or kinetic limitations on the donor (OEC) or the acceptor side. In this study, we investigate the effects of individual S state transitions and of the quinone acceptor side on the miss parameter by analyzing the flash-induced oxygen evolution patterns and the S2, S3 and S0 state lifetimes in thylakoid samples of the extremophilic red alga Cyanidioschyzon merolae. The data are analyzed employing a global fit analysis and the results are compared to the data obtained previously for spinach thylakoids. These two organisms were selected, because the redox potential of QA/QA− in PSII is significantly less negative in C. merolae (Em = − 104 mV) than in spinach (Em = − 163 mV). This significant difference in redox potential was expected to allow the disentanglement of acceptor and donor side effects on the miss parameter. Our data indicate that, at slightly acidic and neutral pH values, the Em of QA−/QA plays only a minor role for the miss parameter. By contrast, the increased energy gap for the backward electron transfer from QA− to Pheo slows down the charge recombination reaction with the S3 and S2 states considerably. In addition, our data support the concept that the S2 → S3 transition is the least efficient step during the oxidation of water to molecular oxygen in the Kok cycle of PSII.","language":"en","number":"1","urldate":"2024-10-16","journal":"Photosynthesis Research","author":[{"propositions":[],"lastnames":["Pham"],"firstnames":["Long","Vo"],"suffixes":[]},{"propositions":[],"lastnames":["Janna","Olmos"],"firstnames":["Julian","David"],"suffixes":[]},{"propositions":[],"lastnames":["Chernev"],"firstnames":["Petko"],"suffixes":[]},{"propositions":[],"lastnames":["Kargul"],"firstnames":["Joanna"],"suffixes":[]},{"propositions":[],"lastnames":["Messinger"],"firstnames":["Johannes"],"suffixes":[]}],"month":"March","year":"2019","keywords":"Cyanidioschyzon merolae, Flash-induced oxygen oscillation pattern (FIOP), Mechanism of water oxidation, Photosynthesis, Photosystem II, Unequal miss parameter","pages":"93–106","bibtex":"@article{pham_unequal_2019,\n\ttitle = {Unequal misses during the flash-induced advancement of photosystem {II}: effects of the {S} state and acceptor side cycles},\n\tvolume = {139},\n\tissn = {1573-5079},\n\tshorttitle = {Unequal misses during the flash-induced advancement of photosystem {II}},\n\turl = {https://doi.org/10.1007/s11120-018-0574-0},\n\tdoi = {10.1007/s11120-018-0574-0},\n\tabstract = {Photosynthetic water oxidation is catalyzed by the oxygen-evolving complex (OEC) in photosystem II (PSII). This process is energetically driven by light-induced charge separation in the reaction center of PSII, which leads to a stepwise accumulation of oxidizing equivalents in the OEC (Si states, i = 0–4) resulting in O2 evolution after each fourth flash, and to the reduction of plastoquinone to plastoquinol on the acceptor side of PSII. However, the Si-state advancement is not perfect, which according to the Kok model is described by miss-hits (misses). These may be caused by redox equilibria or kinetic limitations on the donor (OEC) or the acceptor side. In this study, we investigate the effects of individual S state transitions and of the quinone acceptor side on the miss parameter by analyzing the flash-induced oxygen evolution patterns and the S2, S3 and S0 state lifetimes in thylakoid samples of the extremophilic red alga Cyanidioschyzon merolae. The data are analyzed employing a global fit analysis and the results are compared to the data obtained previously for spinach thylakoids. These two organisms were selected, because the redox potential of QA/QA− in PSII is significantly less negative in C. merolae (Em = − 104 mV) than in spinach (Em = − 163 mV). This significant difference in redox potential was expected to allow the disentanglement of acceptor and donor side effects on the miss parameter. Our data indicate that, at slightly acidic and neutral pH values, the Em of QA−/QA plays only a minor role for the miss parameter. By contrast, the increased energy gap for the backward electron transfer from QA− to Pheo slows down the charge recombination reaction with the S3 and S2 states considerably. In addition, our data support the concept that the S2 → S3 transition is the least efficient step during the oxidation of water to molecular oxygen in the Kok cycle of PSII.},\n\tlanguage = {en},\n\tnumber = {1},\n\turldate = {2024-10-16},\n\tjournal = {Photosynthesis Research},\n\tauthor = {Pham, Long Vo and Janna Olmos, Julian David and Chernev, Petko and Kargul, Joanna and Messinger, Johannes},\n\tmonth = mar,\n\tyear = {2019},\n\tkeywords = {Cyanidioschyzon merolae, Flash-induced oxygen oscillation pattern (FIOP), Mechanism of water oxidation, Photosynthesis, Photosystem II, Unequal miss parameter},\n\tpages = {93--106},\n}\n\n\n\n","author_short":["Pham, L. V.","Janna Olmos, J. D.","Chernev, P.","Kargul, J.","Messinger, J."],"key":"pham_unequal_2019","id":"pham_unequal_2019","bibbaseid":"pham-jannaolmos-chernev-kargul-messinger-unequalmissesduringtheflashinducedadvancementofphotosystemiieffectsofthesstateandacceptorsidecycles-2019","role":"author","urls":{"Paper":"https://doi.org/10.1007/s11120-018-0574-0"},"keyword":["Cyanidioschyzon merolae","Flash-induced oxygen oscillation pattern (FIOP)","Mechanism of water oxidation","Photosynthesis","Photosystem II","Unequal miss parameter"],"metadata":{"authorlinks":{}}},"bibtype":"article","biburl":"https://bibbase.org/zotero/upscpub","dataSources":["9cGcv2t8pRzC92kzs","W3CMg4R9pW5F2Kaqv"],"keywords":["cyanidioschyzon merolae","flash-induced oxygen oscillation pattern (fiop)","mechanism of water oxidation","photosynthesis","photosystem ii","unequal miss parameter"],"search_terms":["unequal","misses","during","flash","induced","advancement","photosystem","effects","state","acceptor","side","cycles","pham","janna olmos","chernev","kargul","messinger"],"title":"Unequal misses during the flash-induced advancement of photosystem II: effects of the S state and acceptor side cycles","year":2019}