Modulation of the cost of pHi regulation during metabolic depression: a (31)P-NMR study in invertebrate (Sipunculus nudus) isolated muscle. Pörtner, H., O., Bock, C., & Reipschläger, a. The Journal of experimental biology, 203(Pt 16):2417-28, 8, 2000.
Modulation of the cost of pHi regulation during metabolic depression: a (31)P-NMR study in invertebrate (Sipunculus nudus) isolated muscle. [pdf]Paper  Modulation of the cost of pHi regulation during metabolic depression: a (31)P-NMR study in invertebrate (Sipunculus nudus) isolated muscle. [link]Website  abstract   bibtex   
Extracellular acidosis has been demonstrated to play a key role in the process of metabolic depression under long-term environmental stress, exemplified in the marine invertebrate Sipunculus nudus. These findings led to the hypothesis that acid-base regulation is associated with a visible cost depending on the rate and mode of H(+)-equivalent ion exchange. To test this hypothesis, the effects of different ion-transport inhibitors on the rate of pH recovery during hypercapnia, on energy turnover and on steady-state acid-base variables were studied in isolated body wall musculature of the marine worm Sipunculus nudus under control conditions (pHe 7.90) and during steady-state extracellular acidosis (pHe 7.50 or 7.20) by in vivo (31)P-NMR and oxygen consumption analyses. During acute hypercapnia (2 % CO(2)), recovery of pHi was delayed at pHe 7.5 compared with pHe 7.9. Inhibition of the Na(+)/H(+)-exchanger by 5-(N,N-dimethyl)-amiloride (DMA) at pHe 7.5 delayed recovery even further. This effect was much smaller at pHe 7.9. Inhibition of anion exchange by the addition of the transport inhibitor 4, 4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) prevented pH recovery at pHe 7.5 and delayed recovery at pHe 7.9, in accordance with an effect on Na(+)-dependent Cl(-)/HCO(3)(-) exchange. The effects of ouabain, DIDS and DMA on metabolic rate were reduced at low pHe, thereby supporting the conclusion that acidosis caused the ATP demand of Na(+)/K(+)-ATPase to fall. This reduction occurred via an inhibiting effect on both Na(+)/H(+)- and Na(+)-dependent Cl(-)/HCO(3)(-) (i.e. Na(+)/H(+)/Cl(-)/HCO(3)(-)) exchange in accordance with a reduction in the ATP demand for acid-base regulation during metabolic depression. Considering the ATP stoichiometries of the two exchangers, metabolic depression may be supported by the predominant use of Na(+)/H(+)/Cl(-)/HCO(3)(-) exchange under conditions of extracellular acidosis.

Downloads: 0