Protein lipoylation in mitochondria requires Fe–S cluster assembly factors NFU4 and NFU5. Przybyla-Toscano, J., Maclean, A. E, Franceschetti, M., Liebsch, D., Vignols, F., Keech, O., Rouhier, N., & Balk, J. Plant Physiology, 188(2):997–1013, February, 2022.
Protein lipoylation in mitochondria requires Fe–S cluster assembly factors NFU4 and NFU5 [link]Paper  doi  abstract   bibtex   
Plants have evolutionarily conserved NifU-like (NFU)-domain proteins that are targeted to plastids or mitochondria. ‘Plastid-type’ NFU1, NFU2 and NFU3 in Arabidopsis (Arabidopsis thaliana) play a role in iron-sulfur (Fe-S) cluster assembly in this organelle, whereas the type-II NFU4 and NFU5 proteins have not been subjected to mutant studies in any plant species to determine their biological role. Here, we confirmed that NFU4 and NFU5 are targeted to the mitochondria. The proteins were constitutively produced in all parts of the plant, suggesting a housekeeping function. Double nfu4 nfu5 knockout mutants were embryonic lethal, and depletion of NFU4 and NFU5 proteins led to growth arrest of young seedlings. Biochemical analyses revealed that NFU4 and NFU5 are required for lipoylation of the H proteins of the glycine decarboxylase complex and the E2 subunits of other mitochondrial dehydrogenases, with little impact on Fe-S cluster-containing respiratory complexes or aconitase. Consequently, the Gly-to-Ser ratio was increased in mutant seedlings and early growth improved with elevated CO2 treatment. In addition, pyruvate, 2-oxoglutarate and branched-chain amino acids accumulated in nfu4 nfu5 mutants, further supporting defects in the other three mitochondrial lipoate-dependent enzyme complexes. NFU4 and NFU5 interacted with mitochondrial lipoyl synthase (LIP1) in yeast 2-hybrid and bimolecular fluorescence complementation assays. These data indicate that NFU4 and NFU5 have a more specific function than previously thought, most likely providing Fe-S clusters to lipoyl synthase.
@article{przybyla-toscano_protein_2022,
	title = {Protein lipoylation in mitochondria requires {Fe}–{S} cluster assembly factors {NFU4} and {NFU5}},
	volume = {188},
	issn = {0032-0889},
	url = {https://doi.org/10.1093/plphys/kiab501},
	doi = {10.1093/plphys/kiab501},
	abstract = {Plants have evolutionarily conserved NifU-like (NFU)-domain proteins that are targeted to plastids or mitochondria. ‘Plastid-type’ NFU1, NFU2 and NFU3 in Arabidopsis (Arabidopsis thaliana) play a role in iron-sulfur (Fe-S) cluster assembly in this organelle, whereas the type-II NFU4 and NFU5 proteins have not been subjected to mutant studies in any plant species to determine their biological role. Here, we confirmed that NFU4 and NFU5 are targeted to the mitochondria. The proteins were constitutively produced in all parts of the plant, suggesting a housekeeping function. Double nfu4 nfu5 knockout mutants were embryonic lethal, and depletion of NFU4 and NFU5 proteins led to growth arrest of young seedlings. Biochemical analyses revealed that NFU4 and NFU5 are required for lipoylation of the H proteins of the glycine decarboxylase complex and the E2 subunits of other mitochondrial dehydrogenases, with little impact on Fe-S cluster-containing respiratory complexes or aconitase. Consequently, the Gly-to-Ser ratio was increased in mutant seedlings and early growth improved with elevated CO2 treatment. In addition, pyruvate, 2-oxoglutarate and branched-chain amino acids accumulated in nfu4 nfu5 mutants, further supporting defects in the other three mitochondrial lipoate-dependent enzyme complexes. NFU4 and NFU5 interacted with mitochondrial lipoyl synthase (LIP1) in yeast 2-hybrid and bimolecular fluorescence complementation assays. These data indicate that NFU4 and NFU5 have a more specific function than previously thought, most likely providing Fe-S clusters to lipoyl synthase.},
	number = {2},
	urldate = {2021-11-04},
	journal = {Plant Physiology},
	author = {Przybyla-Toscano, Jonathan and Maclean, Andrew E and Franceschetti, Marina and Liebsch, Daniela and Vignols, Florence and Keech, Olivier and Rouhier, Nicolas and Balk, Janneke},
	month = feb,
	year = {2022},
	pages = {997--1013},
}

Downloads: 0