ICOS eddy covariance flux-station site setup: A review. Rebmann, C., Aubinet, M., Schmid, H., Arriga, N., Aurela, M., Burba, G., Clement, R., De Ligne, A., Fratini, G., Gielen, B., Grace, J., Graf, A., Gross, P., Haapanala, S., Herbst, M., Hörtnagl, L., Ibrom, A., Joly, L., Kljun, N., Kolle, O., Kowalski, A., Lindroth, A., Loustau, D., Mammarella, I., Mauder, M., Merbold, L., Metzger, S., Mölder, M., Montagnani, L., Papale, D., Pavelka, M., Peichl, M., Roland, M., Serrano-Ortiz, P., Siebicke, L., Steinbrecher, R., Tuovinen, J., P., Vesala, T., Wohlfahrt, G., & Franz, D. International Agrophysics, 32(4):471-494, 2018.
doi  abstract   bibtex   
The Integrated Carbon Observation System Re- search Infrastructure aims to provide long-term, continuous ob- servations of sources and sinks of greenhouse gases such as car- bon dioxide, methane, nitrous oxide, and water vapour. At ICOS ecosystem stations, the principal technique for measurements of ecosystem-atmosphere exchange of GHGs is the eddy-covariance technique. The establishment and setup of an eddy-covariance tower have to be carefully reasoned to ensure high quality flux measurements being representative of the investigated ecosys- tem and comparable to measurements at other stations. To fulfill the requirements needed for flux determination with the eddy- covariance technique, variations in GHG concentrations have to be measured at high frequency, simultaneously with the wind velocity, in order to fully capture turbulent fluctuations. This requires the use of high-frequency gas analysers and ultrasonic anemometers. In addition, to analyse flux data with respect to environmental conditions but also to enable corrections in the post-processing procedures, it is necessary to measure additional abiotic variables in close vicinity to the flux measurements. Here we describe the standards the ICOS ecosystem station network has adopted for GHG flux measurements with respect to the setup of instrumentation on towers to maximize measurement precision and accuracy while allowing for flexibility in order to observe specific ecosystem features.
@article{
 title = {ICOS eddy covariance flux-station site setup: A review},
 type = {article},
 year = {2018},
 keywords = {ICOS,eddy covariance technique,greenhouse gas,protocol,tower set up},
 pages = {471-494},
 volume = {32},
 id = {656a8248-62ac-3713-8312-edac5cd454e8},
 created = {2020-08-28T15:56:02.058Z},
 file_attached = {false},
 profile_id = {5c1040db-25e3-36ea-a919-0994a44709e7},
 group_id = {c4af41cc-7e3c-3fd3-9982-bdb923596eee},
 last_modified = {2020-09-08T15:25:47.846Z},
 read = {false},
 starred = {false},
 authored = {false},
 confirmed = {true},
 hidden = {false},
 citation_key = {Rebmann2018a},
 private_publication = {false},
 abstract = {The Integrated Carbon Observation System Re- search Infrastructure aims to provide long-term, continuous ob- servations of sources and sinks of greenhouse gases such as car- bon dioxide, methane, nitrous oxide, and water vapour. At ICOS ecosystem stations, the principal technique for measurements of ecosystem-atmosphere exchange of GHGs is the eddy-covariance technique. The establishment and setup of an eddy-covariance tower have to be carefully reasoned to ensure high quality flux measurements being representative of the investigated ecosys- tem and comparable to measurements at other stations. To fulfill the requirements needed for flux determination with the eddy- covariance technique, variations in GHG concentrations have to be measured at high frequency, simultaneously with the wind velocity, in order to fully capture turbulent fluctuations. This requires the use of high-frequency gas analysers and ultrasonic anemometers. In addition, to analyse flux data with respect to environmental conditions but also to enable corrections in the post-processing procedures, it is necessary to measure additional abiotic variables in close vicinity to the flux measurements. Here we describe the standards the ICOS ecosystem station network has adopted for GHG flux measurements with respect to the setup of instrumentation on towers to maximize measurement precision and accuracy while allowing for flexibility in order to observe specific ecosystem features.},
 bibtype = {article},
 author = {Rebmann, Corinna and Aubinet, Marc and Schmid, Hape and Arriga, Nicola and Aurela, Mika and Burba, George and Clement, Robert and De Ligne, Anne and Fratini, Gerardo and Gielen, Bert and Grace, John and Graf, Alexander and Gross, Patrick and Haapanala, Sami and Herbst, Mathias and Hörtnagl, Lukas and Ibrom, Andreas and Joly, Lilian and Kljun, Natascha and Kolle, Olaf and Kowalski, Andrew and Lindroth, Anders and Loustau, Denis and Mammarella, Ivan and Mauder, Matthias and Merbold, Lutz and Metzger, Stefan and Mölder, Meelis and Montagnani, Leonardo and Papale, Dario and Pavelka, Marian and Peichl, Matthias and Roland, Marilyn and Serrano-Ortiz, Penélope and Siebicke, Lukas and Steinbrecher, Rainer and Tuovinen, Juha Pekka and Vesala, Timo and Wohlfahrt, Georg and Franz, Daniela},
 doi = {10.1515/intag-2017-0044},
 journal = {International Agrophysics},
 number = {4}
}

Downloads: 0