On the role of the corpus callosum in interhemispheric functional connectivity in humans. Roland, J. L., Snyder, A. Z., Hacker, C. D., Mitra, A., Shimony, J. S., Limbrick, D. D., Raichle, M. E., Smyth, M. D., & Leuthardt, E. C. Proceedings of the National Academy of Sciences, 114(50):13278–13283, December, 2017.
On the role of the corpus callosum in interhemispheric functional connectivity in humans [link]Paper  doi  abstract   bibtex   
Significance The relation between structural and functional connectivity has profound implications for our understanding of cerebral physiology and cognitive neuroscience. Yet, this relation remains incompletely understood. Cases in which the corpus callosum is sectioned for medical reasons provide a unique opportunity to study this question. We report functional connectivity assessed before and after surgical section of the corpus callosum, including multiyear follow-up in a limited subsample. Our results demonstrate a causal role for the corpus callosum in maintaining functional connectivity between the hemispheres. Additionally, comparison of results obtained in complete vs. partial callosotomy demonstrate that polysynaptic connections also play a role in maintaining interhemispheric functional connectivity. , Resting state functional connectivity is defined in terms of temporal correlations between physiologic signals, most commonly studied using functional magnetic resonance imaging. Major features of functional connectivity correspond to structural (axonal) connectivity. However, this relation is not one-to-one. Interhemispheric functional connectivity in relation to the corpus callosum presents a case in point. Specifically, several reports have documented nearly intact interhemispheric functional connectivity in individuals in whom the corpus callosum (the major commissure between the hemispheres) never develops. To investigate this question, we assessed functional connectivity before and after surgical section of the corpus callosum in 22 patients with medically refractory epilepsy. Section of the corpus callosum markedly reduced interhemispheric functional connectivity. This effect was more profound in multimodal associative areas in the frontal and parietal lobe than primary regions of sensorimotor and visual function. Moreover, no evidence of recovery was observed in a limited sample in which multiyear, longitudinal follow-up was obtained. Comparison of partial vs. complete callosotomy revealed several effects implying the existence of polysynaptic functional connectivity between remote brain regions. Thus, our results demonstrate that callosal as well as extracallosal anatomical connections play a role in the maintenance of interhemispheric functional connectivity.
@article{roland_role_2017,
	title = {On the role of the corpus callosum in interhemispheric functional connectivity in humans},
	volume = {114},
	issn = {0027-8424, 1091-6490},
	url = {https://pnas.org/doi/full/10.1073/pnas.1707050114},
	doi = {10/gcrnh9},
	abstract = {Significance
            The relation between structural and functional connectivity has profound implications for our understanding of cerebral physiology and cognitive neuroscience. Yet, this relation remains incompletely understood. Cases in which the corpus callosum is sectioned for medical reasons provide a unique opportunity to study this question. We report functional connectivity assessed before and after surgical section of the corpus callosum, including multiyear follow-up in a limited subsample. Our results demonstrate a causal role for the corpus callosum in maintaining functional connectivity between the hemispheres. Additionally, comparison of results obtained in complete vs. partial callosotomy demonstrate that polysynaptic connections also play a role in maintaining interhemispheric functional connectivity.
          , 
            Resting state functional connectivity is defined in terms of temporal correlations between physiologic signals, most commonly studied using functional magnetic resonance imaging. Major features of functional connectivity correspond to structural (axonal) connectivity. However, this relation is not one-to-one. Interhemispheric functional connectivity in relation to the corpus callosum presents a case in point. Specifically, several reports have documented nearly intact interhemispheric functional connectivity in individuals in whom the corpus callosum (the major commissure between the hemispheres) never develops. To investigate this question, we assessed functional connectivity before and after surgical section of the corpus callosum in 22 patients with medically refractory epilepsy. Section of the corpus callosum markedly reduced interhemispheric functional connectivity. This effect was more profound in multimodal associative areas in the frontal and parietal lobe than primary regions of sensorimotor and visual function. Moreover, no evidence of recovery was observed in a limited sample in which multiyear, longitudinal follow-up was obtained. Comparison of partial vs. complete callosotomy revealed several effects implying the existence of polysynaptic functional connectivity between remote brain regions. Thus, our results demonstrate that callosal as well as extracallosal anatomical connections play a role in the maintenance of interhemispheric functional connectivity.},
	language = {en},
	number = {50},
	urldate = {2023-01-03},
	journal = {Proceedings of the National Academy of Sciences},
	author = {Roland, Jarod L. and Snyder, Abraham Z. and Hacker, Carl D. and Mitra, Anish and Shimony, Joshua S. and Limbrick, David D. and Raichle, Marcus E. and Smyth, Matthew D. and Leuthardt, Eric C.},
	month = dec,
	year = {2017},
	pages = {13278--13283},
}

Downloads: 0