Tyrosine phosphorylation of SHIP promotes its proteasomal degradation. Ruschmann, J., Ho, V., Antignano, F., Kuroda, E., Lam, V., Ibaraki, M., Snyder, K., Kim, C., Flavell, R. A., Kawakami, T., Sly, L., Turhan, A. G., & Krystal, G. Experimental Hematology, 38(5):392–402, May, 2010.
Tyrosine phosphorylation of SHIP promotes its proteasomal degradation [link]Paper  abstract   bibtex   
Objective. The activity of the SH2-containing-phosphatidylinositol-5'-phosphatase (SHIP, also known as SHIN), a critical hematopoietic-restricted negative regulator of the PI3 kinase (PI3K) pathway, is regulated in large part via its protein levels. We sought to determine the mechanism(s) involved in its downregulation by BCR-ABL and by interleukin (IL)-4. Materials and Methods. We used Ba/F3(p210-tetOFF) cells to study the downregulation of SHIP by BCR-ABL and bone marrow derived macrophages to study SHIP's downregulation by IL-4. Results. We show herein that BCR-ABL downregulates SHIP, but not SHIP2 or PTEN, and this can be blocked with the Src kinase inhibitor PP2, which inhibits the tyrosine phosphorylation of SHIP, or with the proteasomal inhibitor MG-132. We also show, using anti-SHIP immunoprecipitates, that c-Cbl and Cbl-b are associated with SHIP and that BCR-ABL induces SHIP's polyubiquitination. This ubiquitination can be blocked with PP2, consistent with the tyrosine phosphorylation of SHIP acting as a signal for its ubiquitination. In bone marrow derived macrophages, IL-4 also leads to the proteasomal degradation of SHIP but, unlike in Ba/F3(p210-tetOFF) cells, SHIP2 is also proteasomally degraded and the degradation of both inositol phosphatases can be prevented with PP2 or MG-132. Conclusion. Our results suggest that SHIP protein levels can be reduced via BCR-ABL and/or Src family member-induced tyrosine phosphorylation of SHIP because this triggers its polyubiquitination and degradation within the proteasome. (C) 2010 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc.
@article{ruschmann_tyrosine_2010,
	title = {Tyrosine phosphorylation of {SHIP} promotes its proteasomal degradation},
	volume = {38},
	issn = {0301-472X},
	shorttitle = {Tyrosine phosphorylation of {SHIP} promotes its proteasomal degradation},
	url = {<Go to ISI>://WOS:000277015400006},
	abstract = {Objective. The activity of the SH2-containing-phosphatidylinositol-5'-phosphatase (SHIP, also known as SHIN), a critical hematopoietic-restricted negative regulator of the PI3 kinase (PI3K) pathway, is regulated in large part via its protein levels. We sought to determine the mechanism(s) involved in its downregulation by BCR-ABL and by interleukin (IL)-4. Materials and Methods. We used Ba/F3(p210-tetOFF) cells to study the downregulation of SHIP by BCR-ABL and bone marrow derived macrophages to study SHIP's downregulation by IL-4. Results. We show herein that BCR-ABL downregulates SHIP, but not SHIP2 or PTEN, and this can be blocked with the Src kinase inhibitor PP2, which inhibits the tyrosine phosphorylation of SHIP, or with the proteasomal inhibitor MG-132. We also show, using anti-SHIP immunoprecipitates, that c-Cbl and Cbl-b are associated with SHIP and that BCR-ABL induces SHIP's polyubiquitination. This ubiquitination can be blocked with PP2, consistent with the tyrosine phosphorylation of SHIP acting as a signal for its ubiquitination. In bone marrow derived macrophages, IL-4 also leads to the proteasomal degradation of SHIP but, unlike in Ba/F3(p210-tetOFF) cells, SHIP2 is also proteasomally degraded and the degradation of both inositol phosphatases can be prevented with PP2 or MG-132. Conclusion. Our results suggest that SHIP protein levels can be reduced via BCR-ABL and/or Src family member-induced tyrosine phosphorylation of SHIP because this triggers its polyubiquitination and degradation within the proteasome. (C) 2010 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc.},
	number = {5},
	journal = {Experimental Hematology},
	author = {Ruschmann, J. and Ho, V. and Antignano, F. and Kuroda, E. and Lam, V. and Ibaraki, M. and Snyder, K. and Kim, C. and Flavell, R. A. and Kawakami, T. and Sly, L. and Turhan, A. G. and Krystal, G.},
	month = may,
	year = {2010},
	pages = {392--402},
}

Downloads: 0