Supporting the shift towards continuous pharmaceutical manufacturing by condition monitoring. Schenkendorf, R. In 2016 3rd Conference on Control and Fault-Tolerant Systems (SysTol), volume 2016-Novem, pages 593-598, 9, 2016. IEEE.
Supporting the shift towards continuous pharmaceutical manufacturing by condition monitoring [pdf]Paper  doi  abstract   bibtex   
© 2016 IEEE.Over the last decade there has been an increased interest in the pharmaceutical industry to shift the manufacturing process of drugs from batch to continuous operation. The continuous manufacturing of pharmaceuticals provides significant benefits, e.g. savings in cost, time and materials - to name but a few. The implementation of a continuous manufacturing strategy, however, is challenging. To gain profit from a continuous process one has to ensure its proper operation, i.e. a long time-span until the next prospective unscheduled downtime. Thus, the installed operation units have to be: 1) robust against disturbances by engineering design principles and by advanced fault tolerant control schemes, respectively; and 2) the condition of the operation units has to be monitored reliably to trigger, in case of need, appropriate intervention strategies in a timely manner. In this paper, the focus is on the monitoring aspect. Here, a model-based fault detection and identification framework is implemented, which selects the most data-supported model candidate from a set of predefined model hypotheses including the reference model (normal behavior) as well as failure models. In addition, to enable an improved diagnosis the system under study can be steered deliberately based on the proposed concept resulting into an active fault diagnosis framework. Preliminary results are demonstrated by an academic three-tank system.

Downloads: 0