A gene expression map of Arabidopsis thaliana development. Schmid, M., Davison, T. S., Henz, S. R., Pape, U. J., Demar, M., Vingron, M., Schölkopf, B., Weigel, D., & Lohmann, J. U. Nature Genetics, 37(5):501–506, May, 2005.
doi  abstract   bibtex   
Regulatory regions of plant genes tend to be more compact than those of animal genes, but the complement of transcription factors encoded in plant genomes is as large or larger than that found in those of animals. Plants therefore provide an opportunity to study how transcriptional programs control multicellular development. We analyzed global gene expression during development of the reference plant Arabidopsis thaliana in samples covering many stages, from embryogenesis to senescence, and diverse organs. Here, we provide a first analysis of this data set, which is part of the AtGenExpress expression atlas. We observed that the expression levels of transcription factor genes and signal transduction components are similar to those of metabolic genes. Examining the expression patterns of large gene families, we found that they are often more similar than would be expected by chance, indicating that many gene families have been co-opted for specific developmental processes.
@article{schmid_gene_2005,
	title = {A gene expression map of {Arabidopsis} thaliana development},
	volume = {37},
	issn = {1061-4036},
	doi = {10.1038/ng1543},
	abstract = {Regulatory regions of plant genes tend to be more compact than those of animal genes, but the complement of transcription factors encoded in plant genomes is as large or larger than that found in those of animals. Plants therefore provide an opportunity to study how transcriptional programs control multicellular development. We analyzed global gene expression during development of the reference plant Arabidopsis thaliana in samples covering many stages, from embryogenesis to senescence, and diverse organs. Here, we provide a first analysis of this data set, which is part of the AtGenExpress expression atlas. We observed that the expression levels of transcription factor genes and signal transduction components are similar to those of metabolic genes. Examining the expression patterns of large gene families, we found that they are often more similar than would be expected by chance, indicating that many gene families have been co-opted for specific developmental processes.},
	language = {eng},
	number = {5},
	journal = {Nature Genetics},
	author = {Schmid, Markus and Davison, Timothy S. and Henz, Stefan R. and Pape, Utz J. and Demar, Monika and Vingron, Martin and Schölkopf, Bernhard and Weigel, Detlef and Lohmann, Jan U.},
	month = may,
	year = {2005},
	pmid = {15806101},
	keywords = {Arabidopsis, Gene Expression, Gene Expression Profiling, Genetic Markers},
	pages = {501--506},
}

Downloads: 0