Selective binding of zn(2+) complexes to human telomeric g-quadruplex DNA. Siters, K. E, Fountain, M. A, & Morrow, J. R Inorganic chemistry, 53(21):11540–51, November, 2014.
Paper doi abstract bibtex The Zn(2+) complex of 5-(1,4,7,10-tetraazacyclododecan-1-ylsulfonyl)-N,N-dimethylnaphthalen-1-amine, Zn(DSC), binds selectively to the biologically relevant human telomeric (H-Telo) G-quadruplex. An increase in the Zn(DSC) dansyl group fluorescence with a simultaneous shift in emission is consistent with the complex binding to H-Telo. The H-Telo G-quadruplex has two binding sites for Zn(DSC) with binding constants in the low micromolar range (2.5 μM). Isothermal calorimetric titrations confirm low micromolar dissociation constants with a 2:1 stoichiometry. The interaction between H-Telo and Zn(DSC) is highly pH-dependent, consistent with binding to the unpaired thymines in the G-quadruplex loops. As a result, Zn(DSC) selectively binds to H-Telo over duplex DNA. In contrast to Zn(2+), Fe(2+) and Co(2+) do not complex to the DSC macrocycle appreciably under the conditions of the experiment. The Cu(2+) complex of DSC does not interact measurably with the H-Telo G-quadruplex. Interestingly, the H-Telo-Zn(DSC) adduct self-assembles from its individual components at physiological pH and 100 mM KCl. The self-assembly feature, which is specific for the Zn(2+) ion, suggests that this system may be viable as a Zn(2+) sensor. Pentanucleotides were studied in order to better describe the binding of Zn(DSC) to thymine sequences. NMR studies were consistent with the binding of Zn(DSC) to thymine-containing oligonucleotides including CCTCC, CTTCC, and CTCTC. Studies showed that the dansyl group of Zn(DSC) interacts with thymines in CTTCC. Fluorescence spectroscopy and ITC data indicate that Zn(DSC) forms 2:1 adducts with thymines that are spaced (CTCTC) but not tandem thymines (CTTCC). These data are consistent with one Zn(DSC) complex binding to two separate loops in the G-quadruplex. A second Zn(2+) complex containing an acridine pendent, Zn(ACR), binds tightly to pentanucleotides with both tandem and spaced thymines. Zn(ACR) indiscriminately binds to both H-Telo and duplex DNA.
@article{Siters2014,
title = {Selective binding of zn(2+) complexes to human telomeric g-quadruplex {DNA}.},
volume = {53},
issn = {1520-510X},
url = {http://www.ncbi.nlm.nih.gov/pubmed/25310175},
doi = {10.1021/ic501484p},
abstract = {The Zn(2+) complex of 5-(1,4,7,10-tetraazacyclododecan-1-ylsulfonyl)-N,N-dimethylnaphthalen-1-amine, Zn(DSC), binds selectively to the biologically relevant human telomeric (H-Telo) G-quadruplex. An increase in the Zn(DSC) dansyl group fluorescence with a simultaneous shift in emission is consistent with the complex binding to H-Telo. The H-Telo G-quadruplex has two binding sites for Zn(DSC) with binding constants in the low micromolar range (2.5 μM). Isothermal calorimetric titrations confirm low micromolar dissociation constants with a 2:1 stoichiometry. The interaction between H-Telo and Zn(DSC) is highly pH-dependent, consistent with binding to the unpaired thymines in the G-quadruplex loops. As a result, Zn(DSC) selectively binds to H-Telo over duplex DNA. In contrast to Zn(2+), Fe(2+) and Co(2+) do not complex to the DSC macrocycle appreciably under the conditions of the experiment. The Cu(2+) complex of DSC does not interact measurably with the H-Telo G-quadruplex. Interestingly, the H-Telo-Zn(DSC) adduct self-assembles from its individual components at physiological pH and 100 mM KCl. The self-assembly feature, which is specific for the Zn(2+) ion, suggests that this system may be viable as a Zn(2+) sensor. Pentanucleotides were studied in order to better describe the binding of Zn(DSC) to thymine sequences. NMR studies were consistent with the binding of Zn(DSC) to thymine-containing oligonucleotides including CCTCC, CTTCC, and CTCTC. Studies showed that the dansyl group of Zn(DSC) interacts with thymines in CTTCC. Fluorescence spectroscopy and ITC data indicate that Zn(DSC) forms 2:1 adducts with thymines that are spaced (CTCTC) but not tandem thymines (CTTCC). These data are consistent with one Zn(DSC) complex binding to two separate loops in the G-quadruplex. A second Zn(2+) complex containing an acridine pendent, Zn(ACR), binds tightly to pentanucleotides with both tandem and spaced thymines. Zn(ACR) indiscriminately binds to both H-Telo and duplex DNA.},
number = {21},
journal = {Inorganic chemistry},
author = {Siters, Kevin E and Fountain, Matthew A and Morrow, Janet R},
month = nov,
year = {2014},
pmid = {25310175},
keywords = {\#nosource},
pages = {11540--51},
}
Downloads: 0
{"_id":"oxrHTR4q9Sse4wchS","bibbaseid":"siters-fountain-morrow-selectivebindingofzn2complexestohumantelomericgquadruplexdna-2014","author_short":["Siters, K. E","Fountain, M. A","Morrow, J. R"],"bibdata":{"bibtype":"article","type":"article","title":"Selective binding of zn(2+) complexes to human telomeric g-quadruplex DNA.","volume":"53","issn":"1520-510X","url":"http://www.ncbi.nlm.nih.gov/pubmed/25310175","doi":"10.1021/ic501484p","abstract":"The Zn(2+) complex of 5-(1,4,7,10-tetraazacyclododecan-1-ylsulfonyl)-N,N-dimethylnaphthalen-1-amine, Zn(DSC), binds selectively to the biologically relevant human telomeric (H-Telo) G-quadruplex. An increase in the Zn(DSC) dansyl group fluorescence with a simultaneous shift in emission is consistent with the complex binding to H-Telo. The H-Telo G-quadruplex has two binding sites for Zn(DSC) with binding constants in the low micromolar range (2.5 μM). Isothermal calorimetric titrations confirm low micromolar dissociation constants with a 2:1 stoichiometry. The interaction between H-Telo and Zn(DSC) is highly pH-dependent, consistent with binding to the unpaired thymines in the G-quadruplex loops. As a result, Zn(DSC) selectively binds to H-Telo over duplex DNA. In contrast to Zn(2+), Fe(2+) and Co(2+) do not complex to the DSC macrocycle appreciably under the conditions of the experiment. The Cu(2+) complex of DSC does not interact measurably with the H-Telo G-quadruplex. Interestingly, the H-Telo-Zn(DSC) adduct self-assembles from its individual components at physiological pH and 100 mM KCl. The self-assembly feature, which is specific for the Zn(2+) ion, suggests that this system may be viable as a Zn(2+) sensor. Pentanucleotides were studied in order to better describe the binding of Zn(DSC) to thymine sequences. NMR studies were consistent with the binding of Zn(DSC) to thymine-containing oligonucleotides including CCTCC, CTTCC, and CTCTC. Studies showed that the dansyl group of Zn(DSC) interacts with thymines in CTTCC. Fluorescence spectroscopy and ITC data indicate that Zn(DSC) forms 2:1 adducts with thymines that are spaced (CTCTC) but not tandem thymines (CTTCC). These data are consistent with one Zn(DSC) complex binding to two separate loops in the G-quadruplex. A second Zn(2+) complex containing an acridine pendent, Zn(ACR), binds tightly to pentanucleotides with both tandem and spaced thymines. Zn(ACR) indiscriminately binds to both H-Telo and duplex DNA.","number":"21","journal":"Inorganic chemistry","author":[{"propositions":[],"lastnames":["Siters"],"firstnames":["Kevin","E"],"suffixes":[]},{"propositions":[],"lastnames":["Fountain"],"firstnames":["Matthew","A"],"suffixes":[]},{"propositions":[],"lastnames":["Morrow"],"firstnames":["Janet","R"],"suffixes":[]}],"month":"November","year":"2014","pmid":"25310175","keywords":"#nosource","pages":"11540–51","bibtex":"@article{Siters2014,\n\ttitle = {Selective binding of zn(2+) complexes to human telomeric g-quadruplex {DNA}.},\n\tvolume = {53},\n\tissn = {1520-510X},\n\turl = {http://www.ncbi.nlm.nih.gov/pubmed/25310175},\n\tdoi = {10.1021/ic501484p},\n\tabstract = {The Zn(2+) complex of 5-(1,4,7,10-tetraazacyclododecan-1-ylsulfonyl)-N,N-dimethylnaphthalen-1-amine, Zn(DSC), binds selectively to the biologically relevant human telomeric (H-Telo) G-quadruplex. An increase in the Zn(DSC) dansyl group fluorescence with a simultaneous shift in emission is consistent with the complex binding to H-Telo. The H-Telo G-quadruplex has two binding sites for Zn(DSC) with binding constants in the low micromolar range (2.5 μM). Isothermal calorimetric titrations confirm low micromolar dissociation constants with a 2:1 stoichiometry. The interaction between H-Telo and Zn(DSC) is highly pH-dependent, consistent with binding to the unpaired thymines in the G-quadruplex loops. As a result, Zn(DSC) selectively binds to H-Telo over duplex DNA. In contrast to Zn(2+), Fe(2+) and Co(2+) do not complex to the DSC macrocycle appreciably under the conditions of the experiment. The Cu(2+) complex of DSC does not interact measurably with the H-Telo G-quadruplex. Interestingly, the H-Telo-Zn(DSC) adduct self-assembles from its individual components at physiological pH and 100 mM KCl. The self-assembly feature, which is specific for the Zn(2+) ion, suggests that this system may be viable as a Zn(2+) sensor. Pentanucleotides were studied in order to better describe the binding of Zn(DSC) to thymine sequences. NMR studies were consistent with the binding of Zn(DSC) to thymine-containing oligonucleotides including CCTCC, CTTCC, and CTCTC. Studies showed that the dansyl group of Zn(DSC) interacts with thymines in CTTCC. Fluorescence spectroscopy and ITC data indicate that Zn(DSC) forms 2:1 adducts with thymines that are spaced (CTCTC) but not tandem thymines (CTTCC). These data are consistent with one Zn(DSC) complex binding to two separate loops in the G-quadruplex. A second Zn(2+) complex containing an acridine pendent, Zn(ACR), binds tightly to pentanucleotides with both tandem and spaced thymines. Zn(ACR) indiscriminately binds to both H-Telo and duplex DNA.},\n\tnumber = {21},\n\tjournal = {Inorganic chemistry},\n\tauthor = {Siters, Kevin E and Fountain, Matthew A and Morrow, Janet R},\n\tmonth = nov,\n\tyear = {2014},\n\tpmid = {25310175},\n\tkeywords = {\\#nosource},\n\tpages = {11540--51},\n}\n\n","author_short":["Siters, K. E","Fountain, M. A","Morrow, J. R"],"key":"Siters2014","id":"Siters2014","bibbaseid":"siters-fountain-morrow-selectivebindingofzn2complexestohumantelomericgquadruplexdna-2014","role":"author","urls":{"Paper":"http://www.ncbi.nlm.nih.gov/pubmed/25310175"},"keyword":["#nosource"],"metadata":{"authorlinks":{}},"html":""},"bibtype":"article","biburl":"https://bibbase.org/zotero/eric.larG4","dataSources":["4i5C7S78DvJNsaHyg","5L2zM5wNE5CBYNuea"],"keywords":["#nosource"],"search_terms":["selective","binding","complexes","human","telomeric","quadruplex","dna","siters","fountain","morrow"],"title":"Selective binding of zn(2+) complexes to human telomeric g-quadruplex DNA.","year":2014}