Arabidopsis RNA processing factor SERRATE regulates the transcription of intronless genes. Speth, C., Szabo, E. X., Martinho, C., Collani, S., zur Oven-Krockhaus, S., Richter, S., Droste-Borel, I., Macek, B., Stierhof, Y., Schmid, M., Liu, C., & Laubinger, S. eLife, 7:e37078, August, 2018.
Arabidopsis RNA processing factor SERRATE regulates the transcription of intronless genes [link]Paper  doi  abstract   bibtex   
Intron splicing increases proteome complexity, promotes RNA stability, and enhances transcription. However, introns and the concomitant need for splicing extend the time required for gene expression and can cause an undesirable delay in the activation of genes. Here, we show that the plant microRNA processing factor SERRATE (SE) plays an unexpected and pivotal role in the regulation of intronless genes. Arabidopsis SE associated with more than 1000, mainly intronless, genes in a transcription-dependent manner. Chromatin-bound SE liaised with paused and elongating polymerase II complexes and promoted their association with intronless target genes. Our results indicate that stress-responsive genes contain no or few introns, which negatively affects their expression strength, but that some genes circumvent this limitation via a novel SE-dependent transcriptional activation mechanism. Transcriptome analysis of a Drosophila mutant defective in ARS2, the metazoan homologue of SE, suggests that SE/ARS2 function in regulating intronless genes might be conserved across kingdoms.
@article{speth_arabidopsis_2018,
	title = {Arabidopsis {RNA} processing factor {SERRATE} regulates the transcription of intronless genes},
	volume = {7},
	issn = {2050-084X},
	url = {https://elifesciences.org/articles/37078},
	doi = {10/gd7w68},
	abstract = {Intron splicing increases proteome complexity, promotes RNA stability, and enhances transcription. However, introns and the concomitant need for splicing extend the time required for gene expression and can cause an undesirable delay in the activation of genes. Here, we show that the plant microRNA processing factor SERRATE (SE) plays an unexpected and pivotal role in the regulation of intronless genes. Arabidopsis SE associated with more than 1000, mainly intronless, genes in a transcription-dependent manner. Chromatin-bound SE liaised with paused and elongating polymerase II complexes and promoted their association with intronless target genes. Our results indicate that stress-responsive genes contain no or few introns, which negatively affects their expression strength, but that some genes circumvent this limitation via a novel SE-dependent transcriptional activation mechanism. Transcriptome analysis of a Drosophila mutant defective in ARS2, the metazoan homologue of SE, suggests that SE/ARS2 function in regulating intronless genes might be conserved across kingdoms.},
	language = {en},
	urldate = {2021-06-07},
	journal = {eLife},
	author = {Speth, Corinna and Szabo, Emese Xochitl and Martinho, Claudia and Collani, Silvio and zur Oven-Krockhaus, Sven and Richter, Sandra and Droste-Borel, Irina and Macek, Boris and Stierhof, York-Dieter and Schmid, Markus and Liu, Chang and Laubinger, Sascha},
	month = aug,
	year = {2018},
	pages = {e37078},
}

Downloads: 0