Forecast errors in service systems. Steckley, S. G., Henderson, S. G., & Mehrotra, V. Probability in the Engineering and Informational Sciences, 23(2):305–332, 2009.
Forecast errors in service systems [pdf]Paper  abstract   bibtex   
We investigate the presence and impact of forecast errors in the arrival rate of customers to a service system. Analysis of a large dataset shows that forecast errors can be large relative to the fluctuations naturally expected in a Poisson process. We show that ignoring forecast errors typically leads to overestimates of performance and that forecast errors of the magnitude seen in our dataset can have a practically significant impact on predictions of long-run performance. We also define short-run performance as the random percentage of calls received in a particular period that are answered in a timely fashion. We prove a central limit theorem that yields a normal-mixture approximation for its distribution for Markovian queues and we sketch an argument that shows that a normal-mixture approximation should be valid in great generality. Our results provide motivation for studying staffing strategies that are more flexible than the fixed-level staffing rules traditionally studied in the literature.

Downloads: 0