A Populus EST resource for plant functional genomics. Sterky, F., Bhalerao, R. R., Unneberg, P., Segerman, B., Nilsson, P., Brunner, A. M., Charbonnel-Campaa, L., Lindvall, J. J., Tandre, K., Strauss, S. H., Sundberg, B., Gustafsson, P., Uhlén, M., Bhalerao, R. P., Nilsson, O., Sandberg, G., Karlsson, J., Lundeberg, J., & Jansson, S. Proceedings of the National Academy of Sciences, 101(38):13951–13956, September, 2004. Publisher: National Academy of Sciences Section: Biological Sciences
A Populus EST resource for plant functional genomics [link]Paper  doi  abstract   bibtex   
Trees present a life form of paramount importance for terrestrial ecosystems and human societies because of their ecological structure and physiological function and provision of energy and industrial materials. The genus Populus is the internationally accepted model for molecular tree biology. We have analyzed 102,019 Populus ESTs that clustered into 11,885 clusters and 12,759 singletons. We also provide \textgreater4,000 assembled full clone sequences to serve as a basis for the upcoming annotation of the Populus genome sequence. A public web-based EST database (populusdb) provides digital expression profiles for 18 tissues that comprise the majority of differentiated organs. The coding content of Populus and Arabidopsis genomes shows very high similarity, indicating that differences between these annual and perennial angiosperm life forms result primarily from differences in gene regulation. The high similarity between Populus and Arabidopsis will allow studies of Populus to directly benefit from the detailed functional genomic information generated for Arabidopsis, enabling detailed insights into tree development and adaptation. These data will also valuable for functional genomic efforts in Arabidopsis.
@article{sterky_populus_2004,
	title = {A {Populus} {EST} resource for plant functional genomics},
	volume = {101},
	copyright = {Copyright © 2004, The National Academy of Sciences},
	issn = {0027-8424, 1091-6490},
	url = {https://www.pnas.org/content/101/38/13951},
	doi = {10/brt6bx},
	abstract = {Trees present a life form of paramount importance for terrestrial ecosystems and human societies because of their ecological structure and physiological function and provision of energy and industrial materials. The genus Populus is the internationally accepted model for molecular tree biology. We have analyzed 102,019 Populus ESTs that clustered into 11,885 clusters and 12,759 singletons. We also provide {\textgreater}4,000 assembled full clone sequences to serve as a basis for the upcoming annotation of the Populus genome sequence. A public web-based EST database (populusdb) provides digital expression profiles for 18 tissues that comprise the majority of differentiated organs. The coding content of Populus and Arabidopsis genomes shows very high similarity, indicating that differences between these annual and perennial angiosperm life forms result primarily from differences in gene regulation. The high similarity between Populus and Arabidopsis will allow studies of Populus to directly benefit from the detailed functional genomic information generated for Arabidopsis, enabling detailed insights into tree development and adaptation. These data will also valuable for functional genomic efforts in Arabidopsis.},
	language = {en},
	number = {38},
	urldate = {2021-06-15},
	journal = {Proceedings of the National Academy of Sciences},
	author = {Sterky, Fredrik and Bhalerao, Rupali R. and Unneberg, Per and Segerman, Bo and Nilsson, Peter and Brunner, Amy M. and Charbonnel-Campaa, Laurence and Lindvall, Jenny Jonsson and Tandre, Karolina and Strauss, Steven H. and Sundberg, Björn and Gustafsson, Petter and Uhlén, Mathias and Bhalerao, Rishikesh P. and Nilsson, Ove and Sandberg, Göran and Karlsson, Jan and Lundeberg, Joakim and Jansson, Stefan},
	month = sep,
	year = {2004},
	pmid = {15353603},
	note = {Publisher: National Academy of Sciences
Section: Biological Sciences},
	pages = {13951--13956},
}

Downloads: 0