Two Active Nuclei in 3C 294. Stockton, A., Canalizo, G., Nelan, E., P., & Ridgway, S., E. The Astrophysical Journal, 600(2):626-633, 2004.
Two Active Nuclei in 3C 294 [pdf]Paper  Two Active Nuclei in 3C 294 [link]Website  abstract   bibtex   
The z=1.786 radio galaxy 3C 294 lies < 10" from a 12 mag star and has been the target of at least three previous investigations using adaptive optics (AO) imaging. A major problem in interpreting these results is the uncertainty in the precise alignment of the radio structure with the H- or K-band AO imaging. Here we report observations of the position of the AO guide star with the Hubble Space Telescope Fine Guidance Sensor, which, together with positions from the second United States Naval Observatory's CCD Astrograph Catalog (UCAC2), allow us to register the infrared and radio frames to an accuracy of better than 0.1". The result is that the nuclear compact radio source is not coincident with the brightest discrete object in the AO image, an essentially unresolved source on the eastern side of the light distribution, as Quirrenbach and coworkers had suggested. Instead, the radio source is centered about 0.9" to the west of this object, on one of the two apparently real peaks in a region of diffuse emission. Nevertheless, the conclusion of Quirrenbach and coworkers that 3C 294 involves an ongoing merger appears to be correct: analysis of a recent deep Chandra image of 3C 294 obtained from the archive shows that the nucleus comprises two X-ray sources, which are coincident with the radio nucleus and the eastern stellar object. The X-ray/optical flux ratio of the latter makes it extremely unlikely that it is a foreground Galactic star. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS5-26555. These observations are associated with proposal 08315. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Some of the data were also obtained from the Chandra Data Archive, part of the Chandra X-Ray Observatory Science Center, which is operated for NASA by the Smithsonian Astrophysical Observatory.

Downloads: 0