Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America. Swarts, K., Gutaker, R. M., Benz, B., Blake, M., Bukowski, R., Holland, J., Kruse-Peeples, M., Lepak, N., Prim, L., Romay, M. C., Ross-Ibarra, J., Sanchez-Gonzalez, J. d. J., Schmidt, C., Schuenemann, V. J., Krause, J., Matson, R. G., Weigel, D., Buckler, E. S., & Burbano, H. A. Science, 357(6350):512–515, August, 2017. Publisher: American Association for the Advancement of Science
Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America [link]Paper  doi  abstract   bibtex   
By 4000 years ago, people had introduced maize to the southwestern United States; full agriculture was established quickly in the lowland deserts but delayed in the temperate highlands for 2000 years. We test if the earliest upland maize was adapted for early flowering, a characteristic of modern temperate maize. We sequenced fifteen 1900-year-old maize cobs from Turkey Pen Shelter in the temperate Southwest. Indirectly validated genomic models predicted that Turkey Pen maize was marginally adapted with respect to flowering, as well as short, tillering, and segregating for yellow kernel color. Temperate adaptation drove modern population differentiation and was selected in situ from ancient standing variation. Validated prediction of polygenic traits improves our understanding of ancient phenotypes and the dynamics of environmental adaptation.
@article{swarts_genomic_2017,
	title = {Genomic estimation of complex traits reveals ancient maize adaptation to temperate {North} {America}},
	volume = {357},
	url = {https://www.science.org/doi/10.1126/science.aam9425},
	doi = {10.1126/science.aam9425},
	abstract = {By 4000 years ago, people had introduced maize to the southwestern United States; full agriculture was established quickly in the lowland deserts but delayed in the temperate highlands for 2000 years. We test if the earliest upland maize was adapted for early flowering, a characteristic of modern temperate maize. We sequenced fifteen 1900-year-old maize cobs from Turkey Pen Shelter in the temperate Southwest. Indirectly validated genomic models predicted that Turkey Pen maize was marginally adapted with respect to flowering, as well as short, tillering, and segregating for yellow kernel color. Temperate adaptation drove modern population differentiation and was selected in situ from ancient standing variation. Validated prediction of polygenic traits improves our understanding of ancient phenotypes and the dynamics of environmental adaptation.},
	number = {6350},
	urldate = {2024-03-22},
	journal = {Science},
	author = {Swarts, Kelly and Gutaker, Rafal M. and Benz, Bruce and Blake, Michael and Bukowski, Robert and Holland, James and Kruse-Peeples, Melissa and Lepak, Nicholas and Prim, Lynda and Romay, M. Cinta and Ross-Ibarra, Jeffrey and Sanchez-Gonzalez, Jose de Jesus and Schmidt, Chris and Schuenemann, Verena J. and Krause, Johannes and Matson, R. G. and Weigel, Detlef and Buckler, Edward S. and Burbano, Hernán A.},
	month = aug,
	year = {2017},
	note = {Publisher: American Association for the Advancement of Science},
	pages = {512--515},
}

Downloads: 0