Nanoporous oxidic solids: The confluence of heterogeneous and homogeneous catalysis. Thomas, M, J., Hernandez-Garrido, C, J., Raja, R., Bell, & G, R. Physical Chemistry Chemical Physics, 11(16):2799--2825, Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, United Kingdom, 2009.
Nanoporous oxidic solids: The confluence of heterogeneous and homogeneous catalysis [link]Paper  abstract   bibtex   
The several factors that render certain kinds of nanoporous oxidic solids valuable for the design of a wide range of new heterogeneous catalysts are outlined and exemplified. These factors include: (i), their relative ease of preparation, when both mesoporous siliceous frameworks (ca. 20 to 250 diameter pores) and microporous framework-substituted aluminophosphates (ca. 4 to 14 diameter pores) can be tailored to suit particular catalytic needs according to whether regiospecific or enantio- or shape-selective conversions are the goal; (ii), the enormous internal (three-dimensional) areas that these nanoporous solids possess (typically 103 m2 g-1) and the consequential ease of access of reactants through the internal pores of the solids; (iii), the ability, by judicious solid-state preparative methods to assemble spatially isolated, single-site active centres at the internal surfaces of these open-structure solids, thereby making the heterogeneous catalyst simulate the characteristic features of homogenous and enzymatic catalysts; (iv), the wide variety of in situ, time-resolved and ex situ experimental techniques, coupled with computational methods, that can pin-point the precise structure of the active site under operating conditions and facilitate the formulation of reaction intermediates and mechanisms. Varieties of catalysts are described for the synthesis (often under environmentally benign and solvent-free conditions) of a wide range of organic materials including commodity chemicals (such as adipic and terephthalic acid), fine and pharmaceutical chemicals (e.g. vitamin B3), alkenes, epoxides, and for the photocatalytic preferential destruction of carbon monoxide in the presence of hydrogen. Nanoporous oxidic solids are ideal materials to investigate the phenomenology of catalysis because, in many of them, little distinction exists between a model and a real catalyst. © The Owner Societies 2009.
@article{ Thomas2009b,
  abstract = {The several factors that render certain kinds of nanoporous oxidic solids valuable for the design of a wide range of new heterogeneous catalysts are outlined and exemplified. These factors include: (i), their relative ease of preparation, when both mesoporous siliceous frameworks (ca. 20 to 250 diameter pores) and microporous framework-substituted aluminophosphates (ca. 4 to 14 diameter pores) can be tailored to suit particular catalytic needs according to whether regiospecific or enantio- or shape-selective conversions are the goal; (ii), the enormous internal (three-dimensional) areas that these nanoporous solids possess (typically 103 m2 g-1) and the consequential ease of access of reactants through the internal pores of the solids; (iii), the ability, by judicious solid-state preparative methods to assemble spatially isolated, single-site active centres at the internal surfaces of these open-structure solids, thereby making the heterogeneous catalyst simulate the characteristic features of homogenous and enzymatic catalysts; (iv), the wide variety of in situ, time-resolved and ex situ experimental techniques, coupled with computational methods, that can pin-point the precise structure of the active site under operating conditions and facilitate the formulation of reaction intermediates and mechanisms. Varieties of catalysts are described for the synthesis (often under environmentally benign and solvent-free conditions) of a wide range of organic materials including commodity chemicals (such as adipic and terephthalic acid), fine and pharmaceutical chemicals (e.g. vitamin B3), alkenes, epoxides, and for the photocatalytic preferential destruction of carbon monoxide in the presence of hydrogen. Nanoporous oxidic solids are ideal materials to investigate the phenomenology of catalysis because, in many of them, little distinction exists between a model and a real catalyst. © The Owner Societies 2009.},
  address = {Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, United Kingdom},
  annote = {Cited By (since 1996): 24

        
Export Date: 15 January 2013

        
Source: Scopus

        
CODEN: PPCPF

        
doi: 10.1039/b819249a

        
Language of Original Document: English

        
Correspondence Address: Thomas, J. M.; Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, United Kingdom; email: jmt2@cam.ac.uk

        
References: Zecchina, A., Rivallan, M., Berlier, G., Lamberti, C., Ricchiardi, G., (2007) Phys. Chem. Chem. Phys., 9, p. 3483; 
Thomas, J.M., (1999) Angew. Chem., Int. Ed., 38, p. 3588; 
Thomas, J.M., Raja, R., Lewis, D.W., (2005) Angew. Chem., Int. Ed., 44, p. 6456; 
Thomas, J.M., Raja, R., (2005) Annu. Rev. Mater. Res., 35, p. 315; 
Thomas, J.M., Raja, R., (2006) Top. Catal., 40, p. 3; 
Thomas, J.M., (2008) J. Chem. Phys., 128, p. 182502; 
Zecchina, A., Aré{a}n, C.O., (1996) Chem. Soc. Rev., 25, p. 187; 
Weckhuysen, B.M., (2003) Phys. Chem. Chem. Phys., 5, p. 4351; 
Corma, A., Garcia, H., (2008) Top. Catal., 48, p. 8; 
Cheetham, A.K., Férey, G., Loiseau, T., (1999) Angew. Chem., Int. Ed., 38, p. 3268; 
Moulijn, J.A., Van Leeuwen, P.W.N.M., Van Santen In, R.A., (1993) Catalysis: An Integrated Approach to Homogeneous Heterogeneous and Industrial Catalysis, Ed., , J. A. Moulijn Elsevier Science, Amsterdam; 
(2007) From Zeolites to Porous Materials, Ed., , R. Xu, J. Chen, Z. Gao and W. Yan, Elsevier Science, Amsterdam; 
Wright, P.A., (2008) Microporous Framework Solids, , RSC Publishing, Cambridge, UK; 
(2002) Handbook of Porous Solids, Ed., , K. S. W. Sing, F. Schuth and J. Weitkamp, Wiley-VCH, Weinheim; 
(2004) Mesoporous Crystals and Related Nano-structured Materials: Proceedings of the Meeting on Mesoporous Crystals and Related Nano-Structured Materials Stockholm, Sweden, Ed., , O. Terasaki, Elsevier, Amsterdam; 
(1997) Handbook of Heterogeneous Catalysis, Ed., 2. , G. Ertl, H. Knozinger, F. Schuth and J. Weitkamp Wiley-VCH, Weinheim, Germany; 
Chorkendorff, I., Niemantsverdriet, J.W., (2003) Concepts of Modern Catalysis and Kinetics, , Wiley-VCH, Weinheim, Germany; 
Van Santen, R.A., Neurock, M., (2006) Molecular Heterogeneous Catalysis: A Theoretical and Computational Approach, , Wiley-VCH, Weinheim, Germany; 
Zecchina, A., Groppo, E., Bordiga, S., (2007) Chem.-Eur. J., 13, p. 2440; 
Weckhuysen, B.M., (2002) Chem. Commun., p. 97; 
Ertl, G., (2008) Angew. Chem., Int. Ed., 47, p. 3524; 
Hernandez, J.C., Hungria, A.B., Perez-Omil, J.A., Trasobares, S., Bernal, S., Midgley, P.A., Alavi, A., Calvino, J.J., (2007) J. Phys. Chem. C, 111, p. 9001; 
Pyrz, W.D., Blom, D.A., Vogt, T., Buttrey, D.J., (2008) Angew. Chem., Int. Ed., 47, p. 2788; 
Desanto, P., Buttrey, D.J., Grasselli, R.K., Lugmair, C.G., Volpe, A.F., Toby, B.H., Vogt, T., (2003) Top. Catal., 23, p. 23; 
Thomas, J.M., (2008) ChemPhysChem, 9, p. 1363; 
Thomas, J.M., Thomas, W.J., (1998) Principles and Practice of Heterogeneous Catalysis, , Wiley-VCH; 
Abbenhuis, H.C.L., Van Santen In, R.A., (2008) Turning Points in Solid-State, Materials and Surface Science, Ed., , K. D. M. Harris and P. P. Edwards, RSC Publishing, Cambridge; 
Thomas, J.M., Raja, R., Sankar, G., Bell, R.G., (1999) Nature, 398, p. 227; 
Thomas, J.M., Raja, R., (2001) Chem. Commun., p. 675; 
(1985), US Pat. 4899319(1984), EP Pat. 31252Thomas, J.M., Klinowski, J., (1985) Adv. Catal., 33, p. 199; 
Thomas, J.M., Terasaki, O., Gai, P.L., Zhou, W., Gonzalez-Calbet, J., (2001) Acc. Chem. Res., 34, p. 583; 
Thomas, J.M., (1988) Angew. Chem., Int. Ed. Engl., 27, p. 1673; 
Treacy, M.M.J., Foster, M.D., Hypothetical Zeolites: Enumeration Research, , http://www.hypotheticalzeolites.net; 
Thomas, J.M., Klinowski, J., (2007) Angew. Chem., Int. Ed., 46, p. 7160; 
Majda, D., Paz, F.A.A., Friedrichs, O.D., Foster, M.D., Simperler, A., Bell, R.G., Klinowski, J., (2008) J. Phys. Chem. C, 112, p. 1040; 
(2004), www.uop.com, United Oil Products press releaseKresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S., (1992) Nature, 359, p. 710; 
Yanagisawa, T., Shimizu, T., Kuroda, K., Kato, C., (1990) Bull. Chem. Soc. Jpn., 63, p. 988; 
M. Fonz and C. R. A. Catlow, University College, London, 2008, unpublished workZou, X., Conradsson, T., Klingstedt, M., Dadachov, M.S., O'Keefe, M., (2005) Nature, 437, p. 716; 
Leeuwen, P.W.N.M., (2004) Homogeneous Catalysis: Understanding the Art, , Springer, Netherlands; 
Raja, R., Thomas, J.M., Xu, M., Harris, K.D.M., Greenhill-Hooper, M., Quill, K., (2006) Chem. Commun., p. 448; 
Raja, R., Thomas, J.M., Greenhill-Hooper, M., Ley Steven, V., Paz, F.A.A., (2008) Chem.-Eur. J., 14, p. 2340; 
Corma, A., (1997) Chem. Rev., 97, p. 2373; 
Maesen, T.L.M., Beerdsen, E., Calero, S., Dubbeldam, D., Smit, B., (2006) J. Catal., 237, p. 278; 
Smit, B., Maesen, T.L.M., (2008) Nature, 451, p. 671; 
Yashonath, S., Thomas, J.M., Nowak, A.K., Cheetham, A.K., (1988) Nature, 331, p. 601; 
Xu, Y., Grey, C.P., Thomas, J.M., Cheetham, A.K., (1990) Catal. Lett., 4, p. 251; 
Dahl, I.M., Kolboe, S., (1996) J. Catal., 161, p. 304; 
Bjø rgen, M., Olsbye, U., Petersen, D., Kolboe, S., (2004) J. Catal., 221, p. 1; 
Haw, J.F., Song, W., Marcus, D.M., Nicholas, J.B., (2003) Acc. Chem. Res., 36, p. 317; 
Olsbye, U., (2008) 13th Nordic Conference on Catalysis, , Gothenburgh; 
Chen, J., Thomas, J.M., (1994) J. Chem. Soc., Chem. Commun., p. 603. , -604; 
Barrett, P.A., Jones, R.H., Thomas, J.M., Sankar, G., Shannon, I.J., Catlow, C.R.A., (1996) Chem. Commun., p. 2001. , -2002; 
Marchese, L., Chen, J., Wright, P.A., Thomas, J.M., (1993) J. Phys. Chem., 97, p. 8109; 
Smith, L., Cheetham, A.K., Morris, R.E., Marchese, L., Thomas, J.M., Wright, P.A., Chen, J., (1996) Science, 271, p. 799; 
Smith, K., Zhenhua, Z., Hodgson, P.K.G., (1998) J. Mol. Catal. A: Chem., 134, p. 121; 
Smith, K., Almeer, S., Black, S.J., (2000) Chem. Commun., p. 1571; 
Thomas, J.M., Raja, R., Sankar, G., Bell, R.G., (2001) Acc. Chem. Res., 34, p. 191; 
Dugal, M., Sankar, G., Raja, R., Thomas, J.M., (2000) Angew. Chem., Int. Ed., 39, p. 2310; 
Thomas, J.M., Raja, R., (2005) Proc. Natl. Acad. Sci. U. S. A., p. 13732; 
Maschmeyer, T., Rey, F., Sankar, G., Thomas, J.M., (1995) Nature, 378, p. 159; 
Maschmeyer In, T., (2008) Turning Points in Solid-State, Materials and Surface Science, Ed., , K. D. M. Harris and P. P. Edwards, RSC Publishing, Cambridge, 519; 
Catlow, C.R.A., French, S.A., Sokol, A.A., Thomas, J.M., (2005) Philos. Trans. R. Soc. London, Ser. A, 363, p. 913; 
Thomas, J.M., Catlow, C.R.A., Sankar, G., (2002) Chem. Commun., p. 2921; 
Guidotti, M., Psaro, R., Ravasio, N., Moretti, G., (2000) Chem. Commun., p. 1789; 
Guidotti, M., Batonneau-Gener, I., Gianotti, E., Marchese, L., Mignard, S., Psaro, R., Sgobba, M., Ravasio, N., (2008) Microporous Mesoporous Mater., 111, p. 39; 
Sheldon, R.A., (1983) J. Mol. Catal., 20, p. 1; 
Stavitski, E., Kox, M.H.F., Swart, I., De Groot, F.M.F., Weckhuysen, B.M., (2008) Angew. Chem., Int. Ed., 47, p. 3543; 
Anpo, M., Thomas, J.M., (2006) Chem. Commun., p. 3273; 
Anpo, M., Che, M., (1999) Adv. Catal., 44, p. 119; 
Shannon, I.J., Maschmeyer, T., Oldroyd, R.D., Sankar, G., Thomas, J.M., Pernot, H., Balikdjian, J.-P., Che, M., (1998) J. Chem. Soc., Faraday Trans., 94, p. 1495; 
Siani, A., Captain, B., Alexeev, O.S., Stafyla, E., Hungria, A.B., Midgley, P.A., Thomas, J.M., Amiridis, M.D., (2006) Langmuir, 22, p. 5160; 
Bartholomew, C.H., Farrauto, R.J., (2005) Fundamentals of Industrial Catalytic Processes, , Wiley; 
Kitano, M., Iyatani, K., Tsujimaru, K., Matsuoka, M., Takeuchi, M., Ueshima, M., Thomas, J.M., Anpo, M., (2008) Top. Catal., 49, p. 24; 
Thomas, J.M., (1994) Nature, 368, p. 289; },
  author = {Thomas, J M and Hernandez-Garrido, J C and Raja, R and Bell, R G},
  issn = {14639076 (ISSN)},
  journal = {Physical Chemistry Chemical Physics},
  number = {16},
  pages = {2799--2825},
  title = {{Nanoporous oxidic solids: The confluence of heterogeneous and homogeneous catalysis}},
  url = {https://www.scopus.com/inward/record.url?eid=2-s2.0-64549095328&partnerID=40&md5=b2a57a57c211032a7d454f2a6e3eaae0},
  volume = {11},
  year = {2009}
}

Downloads: 0