Climate change-induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands. Tietjen, B., Schlaepfer, D. R., Bradford, J. B., Lauenroth, W. K., Hall, S. A., Duniway, M. C., Hochstrasser, T., Jia, G., Munson, S. M., Pyke, D. A., & Wilson, S. D. Global Change Biology, 23(7):2743–2754, 2017. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.13598
Climate change-induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands [link]Paper  doi  abstract   bibtex   
Drylands occur worldwide and are particularly vulnerable to climate change because dryland ecosystems depend directly on soil water availability that may become increasingly limited as temperatures rise. Climate change will both directly impact soil water availability and change plant biomass, with resulting indirect feedbacks on soil moisture. Thus, the net impact of direct and indirect climate change effects on soil moisture requires better understanding. We used the ecohydrological simulation model SOILWAT at sites from temperate dryland ecosystems around the globe to disentangle the contributions of direct climate change effects and of additional indirect, climate change-induced changes in vegetation on soil water availability. We simulated current and future climate conditions projected by 16 GCMs under RCP 4.5 and RCP 8.5 for the end of the century. We determined shifts in water availability due to climate change alone and due to combined changes of climate and the growth form and biomass of vegetation. Vegetation change will mostly exacerbate low soil water availability in regions already expected to suffer from negative direct impacts of climate change (with the two RCP scenarios giving us qualitatively similar effects). By contrast, in regions that will likely experience increased water availability due to climate change alone, vegetation changes will counteract these increases due to increased water losses by interception. In only a small minority of locations, climate change-induced vegetation changes may lead to a net increase in water availability. These results suggest that changes in vegetation in response to climate change may exacerbate drought conditions and may dampen the effects of increased precipitation, that is, leading to more ecological droughts despite higher precipitation in some regions. Our results underscore the value of considering indirect effects of climate change on vegetation when assessing future soil moisture conditions in water-limited ecosystems.
@article{tietjen_climate_2017,
	title = {Climate change-induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands},
	volume = {23},
	copyright = {© 2017 John Wiley \& Sons Ltd},
	issn = {1365-2486},
	url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.13598},
	doi = {10.1111/gcb.13598},
	abstract = {Drylands occur worldwide and are particularly vulnerable to climate change because dryland ecosystems depend directly on soil water availability that may become increasingly limited as temperatures rise. Climate change will both directly impact soil water availability and change plant biomass, with resulting indirect feedbacks on soil moisture. Thus, the net impact of direct and indirect climate change effects on soil moisture requires better understanding. We used the ecohydrological simulation model SOILWAT at sites from temperate dryland ecosystems around the globe to disentangle the contributions of direct climate change effects and of additional indirect, climate change-induced changes in vegetation on soil water availability. We simulated current and future climate conditions projected by 16 GCMs under RCP 4.5 and RCP 8.5 for the end of the century. We determined shifts in water availability due to climate change alone and due to combined changes of climate and the growth form and biomass of vegetation. Vegetation change will mostly exacerbate low soil water availability in regions already expected to suffer from negative direct impacts of climate change (with the two RCP scenarios giving us qualitatively similar effects). By contrast, in regions that will likely experience increased water availability due to climate change alone, vegetation changes will counteract these increases due to increased water losses by interception. In only a small minority of locations, climate change-induced vegetation changes may lead to a net increase in water availability. These results suggest that changes in vegetation in response to climate change may exacerbate drought conditions and may dampen the effects of increased precipitation, that is, leading to more ecological droughts despite higher precipitation in some regions. Our results underscore the value of considering indirect effects of climate change on vegetation when assessing future soil moisture conditions in water-limited ecosystems.},
	language = {en},
	number = {7},
	urldate = {2024-03-27},
	journal = {Global Change Biology},
	author = {Tietjen, Britta and Schlaepfer, Daniel R. and Bradford, John B. and Lauenroth, William K. and Hall, Sonia A. and Duniway, Michael C. and Hochstrasser, Tamara and Jia, Gensuo and Munson, Seth M. and Pyke, David A. and Wilson, Scott D.},
	year = {2017},
	note = {\_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.13598},
	keywords = {\#nosource, direct and indirect effects, drought risk, ecohydrological model, shrub encroachment, soil water availability, vegetation impacts},
	pages = {2743--2754},
}

Downloads: 0