Quantum Wasserstein distance based on an optimization over separable states. Tóth, G. & Pitrik, J. Quantum, 2023.
Quantum Wasserstein distance based on an optimization over separable states [link]Paper  doi  bibtex   
@article{toth_quantum_2023,
	title = {Quantum {Wasserstein} distance based on an optimization over separable states},
	volume = {7},
	url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85176735677&doi=10.22331%2fq-2023-10-16-1143&partnerID=40&md5=62e091ad7be475155d11de17aa8d7ae3},
	doi = {10.22331/q-2023-10-16-1143},
	journal = {Quantum},
	author = {Tóth, G. and Pitrik, J.},
	year = {2023},
}

Downloads: 0